
Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

Computer Physics Communications () –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded
turbulent flows on GPU clusters✩

Xiaojue Zhu a,*, Everett Phillips b, Vamsi Spandan a, John Donners c, Gregory Ruetsch b,
Joshua Romero b, Rodolfo Ostilla-Mónico d,g, Yantao Yang a, Detlef Lohse a,f,
Roberto Verzicco e,a, Massimiliano Fatica b, Richard J.A.M. Stevens a,*
a Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Research Institute, and J. M. Burgers Center for Fluid Dynamics,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
b NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA
c SURFsara, Science Park 140, 1098 XG Amsterdam, The Netherlands
d School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
e Dipartimento di Ingegneria Industriale, University of Rome ‘‘Tor Vergata’’, Via del Politecnico 1, Roma 00133, Italy
f Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
g Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA

a r t i c l e i n f o

Article history:
Received 4 May 2017
Received in revised form 21 January 2018
Accepted 27 March 2018
Available online xxxx

Keywords:
GPU
Parallelization
Turbulent flow
Finite-difference scheme
Rayleigh–Bénard convection
Plane Couette flow

a b s t r a c t

The AFiD code, an open source solver for the incompressible Navier–Stokes equations (http://www.afid.
eu), has been ported to GPU clusters to tackle large-scale wall-bounded turbulent flow simulations. The
GPU porting has been carried out in CUDA Fortran with the extensive use of kernel loop directives (CUF
kernels) in order to have a source code as close as possible to the original CPU version; just a few routines
have been manually rewritten. A new transpose scheme has been devised to improve the scaling of
the Poisson solver, which is the main bottleneck of incompressible solvers. For large meshes the GPU
version of the code shows good strong scaling characteristics, and the wall-clock time per step for the
GPU version is an order of magnitude smaller than for the CPU version of the code. Due to the increased
performance and efficient use of memory, the GPU version of AFiD can perform simulations in parameter
ranges that are unprecedented in thermally-driven wall-bounded turbulence. To verify the accuracy of
the code, turbulent Rayleigh–Bénard convection and plane Couette flow are simulated and the results
are in excellent agreement with the experimental and computational data that have been published in
literature.
Program summary
Program Title: AFiD-GPU
Program Files doi: http://dx.doi.org/10.17632/rwjdg7ry66.1
Licensing provisions:MIT
Programming language: Fortran 90, CUDA Fortran, MPI
External routines: PGI, CUDA Toolkit, FFTW3, HDF5
Nature of problem: Solving the three-dimensional Navier–Stokes equations coupled with a scalar field in a
cubic box boundedbetween twowalls andwith periodic boundary conditions in the horizontal directions.
Solution method: Second order finite difference method for spatial discretization, third order Runge–
Kutta scheme in combination with Crank–Nicolson for the implicit terms for time advancement, two
dimensional pencil distributed MPI parallelization, GPU accelerated routines.
Additional comments including restrictions and unusual features: The code is available and supported on
https://github.com/PhysicsofFluids/AFiD_GPU_opensource.

© 2018 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding authors.
E-mail addresses: xiaojue.zhu@utwente.nl (X. Zhu), r.j.a.m.stevens@utwente.nl

(R.J.A.M. Stevens).

https://doi.org/10.1016/j.cpc.2018.03.026
0010-4655/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2018.03.026
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://www.afid.eu
http://www.afid.eu
http://dx.doi.org/10.17632/rwjdg7ry66.1
https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:xiaojue.zhu@utwente.nl
mailto:r.j.a.m.stevens@utwente.nl
https://doi.org/10.1016/j.cpc.2018.03.026

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

2 X. Zhu et al. / Computer Physics Communications () –

1. Introduction

Turbulence is a high dimensional multi-scale process. As the
velocity of the fluid increases, the range of scales of the resulting
motion increases as energy is transferred to smaller and smaller
scales, and the flow transitions from laminar to turbulent. To
understand the physics of this energy transfer, direct numerical
simulations (DNS), which resolve all flow scales, are used. In order
to resolve all scales, large meshes and immense computational
power are required.

Here, two paradigmatic systems are taken as examples,
i.e. Rayleigh–Bénard convection [1–3], the buoyancy driven flow
of a fluid heated from below and cooled from above, and plane
Couette flow, the shear-induced motion of a fluid contained be-
tween two infinite flat walls, which are among the most popular
systems for convection and wall-bounded shear flow. The two are
classical problems in fluid dynamics. Next to pipe [4], channel [5,6],
and Taylor–Couette flows [7,8], the systems have been and are still
used to test various new concepts in the field [1] such as nonlinear
dynamics and chaos, pattern formation, or turbulence, on which
we focus here.

Turbulent Rayleigh–Bénard flow is of interest in a wide range
of sciences, including geology, oceanography, climatology, and
astrophysics as it is a relevantmodel for countless phenomena such
as thermal convection in the atmosphere [9], in the oceans (includ-
ing thermohaline convection) [10], in the Earth’s outer core [11],
where the reversals of the large scale convection are of prime
importance to the magnetic field, in the interior of gaseous giant
planets and in the outer layer of the sun [12]. Natural convection in
technological applications such as buildings, in process technology,
or in metal-production processes is also modeled using Rayleigh–
Bénard flow. For those real-world applications of Rayleigh–Bénard
flow, the system is highly turbulent in both bulk and boundary
layers. This state is the so-called ultimate regime of thermal con-
vection, which has been recently realized experimentally in the
laboratory [13]. However, because of the extremely high Rayleigh
numbers (the non-dimensional temperature difference) and high
Reynolds numbers (the non-dimensional velocity) of the flow,
computationally the ultimate thermal convection regime could not
be reached so far, despite its great importance.

Turbulent plane Couette flow is of interest for more fundamen-
tal reasons. It is the only flow which bears exactly the same total
stress across the thickness, which is one of hypotheses required by
Prandtl’s classical arguments for the existence of logarithmic layers
for the mean velocity profile [14]. Besides, because its simple ge-
ometry, plane Coutte flow is often used as an example to illustrate
the wall-bounded turbulence structure [15], and more recently,
investigation of the self-sustainment of near wall turbulence [16]
or inner–outer wall turbulence interaction [17].

To accurately simulate high Rayleigh and Reynolds number
flows of interest in geo- and astrophysical flows [11,12,18], effi-
cient code parallelization and effective use of large scale supercom-
puters are essential to reach the amount of grid points necessary
to resolve all flow scales. Previous work in parallelizing a second-
order finite-difference solver for natural convection and shear flow
have allowed us to consider unprecedented large computational
boxes using AFiD [19,20]. However, there are still limitations to
the parallelization as it was written for a central processing unit
(CPU)-based system, while the current trends in high performance
computing point towards the increase in use of accelerators. These
are expected to push the performance of supercomputers into the
exascale range by the use of graphic processing units (GPUs) [21].
GPUs are especially well-suited to address problems that can be
expressed as data-parallel computations, where the same program
is executed on different data elements in parallel. GPUs are also
characterized by high memory bandwidth, something especially

important for low-order finite difference computational fluid dy-
namics codes where the data reuse is minimal. Given the above,
and because GPUs are the most commonly used accelerator tech-
nology, we decided to port AFiD to GPU clusters, while further
developing the underlying algorithms. With the porting of AFiD
to GPU, and the introduced efficiency improvements, this open
source code can now tackle unprecedentedly large fluid dynamics
simulations. Therefore we expect the code to be of benefit to the
convection and scientific community at large.

We note that there are also several other open source codes,
such as NEK5000 [22], OpenFOAM [23], Nektar++ [24], and chan-
nelflow.org [25], available. We refer the reader to the respec-
tive references that describe the codes, and the website http://
exaflow-project.eu/, which gives an overview of several of these
codes. In addition, there are commercial packages such as COMSOL,
Aerosoft, ANSYS/Fluent, and Barracuda VR, that can be used to
solve fluid dynamics problems. The downside of commercial pack-
ages is that the source code is not available, which makes further
development of these codes in research projects impossible. Some
of the open source packages mentioned above also scale well up
to large number of cores. However, our specialized code offers
significant performance benefits compared to generalized flow
solvers for canonical model problems such as Rayleigh–Bénard
[1–3], Taylor–Couette [7,8], Double Diffusive Convection [26], and
plane Couette flow [14], forwhich our code is designed. In addition,
it is easier to port a specialized code to a GPU clusterwith relatively
minimal effort, while getting great performance.

This paper is organized as follows. In Section 2 we discuss the
details of the solver AFiD. Subsequently, in Section 3 details of the
GPU implementation are discussed, before we discuss the code
performance in Section 4. In Section 5 we end with a presentation
of Rayleigh–Bénard and plane Couette cases that have been sim-
ulated with the new GPU code. In Section 6 we present the main
conclusions and present future development plans for the code.

2. AFiD code

Here we summarize the numerical method (Section 2.1) and
the parallelization scheme (Section 2.2) as described in Ref. [19]
before we will discuss the specifics of the GPU implementation in
Section 3.

2.1. Numerical scheme

AFiD (http://www.afid.eu) solves the Navier–Stokes equations
with an additional equation for temperature in three-dimensional
coordinates on a Cartesian mesh with two periodic (unbounded)
directions (y and z) which are uniformly discretized and one
bounded direction (x) forwhich non-uniform grids, with clustering
of points near thewalls, can be used. Note that for Rayleigh–Bénard
flow, the temperature is turned on and for plane Couette flow, the
advection–diffusion equation for temperature is turned off and the
body force term in the Navier–Stokes equations is canceled. All the
other features, except the boundary conditions, are the same.

The Navier–Stokes equations with the incompressibility condi-
tion read:

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −ρ−1
0 ∇p + ν∇

2u + Fb (2)

for the temperature field, an advection–diffusion equation is used
∂T
∂t

+ u · ∇T = κ∇
2T , (3)

where u is the velocity vector, p the pressure, ρ0 the density, T the
temperature, ν the kinematic viscosity, κ the thermal diffusivity,

http://exaflow-project.eu/
http://exaflow-project.eu/
http://exaflow-project.eu/
http://www.afid.eu

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

X. Zhu et al. / Computer Physics Communications () – 3

Fig. 1. Location of pressure, temperature and velocities of a 2D simulation cell. The
third dimension (z) is omitted for clarity. As on an ordinary staggered scheme, the
velocity vectors are placed on the borders of the cell and pressure is placed in the
cell center. The temperature is placed at the same location as the vertical velocity,
to ensure exact energy conservation. Note that gravity is in negative x-direction.We
refer to Appendix A for more information on the energy conservation properties of
the used scheme.

and t time. For Rayleigh–Bénard convectionwe use the Boussinesq
approximation: the body force Fb is taken to only depend linearly
on the temperature, and to be in the direction of gravity (ex is
the unit vector anti-parallel to gravity), and we also ignore the
possible dependencies of density, viscosity and thermal diffusivity
on temperature so these parameters are constant. Other body
forces, like the Coriolis force, can be included in this term if one
is dealing with rotating frames.

For the spatial discretization of the domain, we use a conser-
vative, central, second-order, finite-difference discretization on a
staggered grid. A two-dimensional (for clarity) schematic of the
variable arrangement is shown in Fig. 1. The pressure is calculated
at the center of the cell. For thermal convection between two
plates, the temperature field is collocated with the ux grid, the
velocity component in the direction of gravity. This avoids the
interpolation error when calculating the term Fb ∼ Tex in Eq. (2).
This scheme has the advantage of being energy conserving in the
limit ∆t → 0 [27]. In addition to the conservation properties, the
low-order finite difference scheme has the advantage of handling
the shock-like behavior resulting from the absence of the pressure
term in the advection–diffusion equation for temperature from the
Boussinesq approximation [28,29] better.

Given a set of initial conditions, the simulations are advanced
in time by a fractional-step procedure combined with a low-
storage, third-order Runge–Kutta (RK3) scheme and a Crank–
Nicolson method [30] for the implicit terms. The time step ∆t is
constrained by a Courant–Friedrichs–Lewy (CFL) number, whose
definition is given by:

∆t ≤ CFL · min
[

1
|ux|/∆x + |uy|/∆y + |uz |/∆z

]
. (4)

For RK3methods, CFL number is stable up to
√
3 even if, in practice,

simulations are run at a maximum CFL number of approximately
1.3. The RK3 scheme requires three substeps per time step, but due
to the larger time step and the O([∆t]3) error it is more efficient
than a standard second-order Adams–Bashforth integration. The
pressure gradient is introduced through the ‘‘delta’’ form of the
pressure [31–33]: a provisional, non-solenoidal velocity field is
calculated using the old value of the pressure in the discretized
Navier–Stokes equation. The updated pressure, required to enforce
the continuity equation at every cell, is then computed by solving a
Poisson equation for the pressure correction. The velocity andpres-
sure fields are then updated using this correction, which results in

a divergence-free velocity field. Full details of the procedure can
be found in Ref. [34]. Note that spatially, only the pressure term
and the Laplacian operators for the viscous terms in the vertical
direction are treated implicitly.

2.2. Parallelization strategy

The 2DECOMP [35] library is used to implement a two-
dimensional domain decomposition, also known as ‘‘pencil’’ de-
composition. We have extended the 2DECOMP library to suit the
specifics of our scheme. For a pencil decomposition solving tridiag-
onal matrices in directions the pencils are not oriented in, requires
re-orienting the pencils, and thus large all-to-all communications.
We can avoid the solution of the tridiagonal matrices in the hori-
zontal directions by integrating advection terms and viscous terms
in the horizontal directions explicitly. As shown in Ref. [19], using
the CFL time step constraint is sufficient to ensure stability for
the wall-bounded direction for high Reynolds number flows. This
is the reason why in this study, the Laplacian operators for the
viscous terms are treated implicitly only in the vertical direction.
Therefore, aligning the pencils in the wall normal (x) direction
avoids all-to-all communications for the two horizontal directions.
In this way, every processor possesses data from x1 to xN (cf.
Fig. 2) and, for every pair (y, z), a single processor has the full x
information needed to solve the implicit equation in x without
further communication. We note that halo updates must still be
performed during the computation of the intermediate velocity,
but this memory distribution completely eliminates the all-to-all
communications.

All-to-all communications are unavoidable during the pressure
correction step, as a Poisson equation must be solved. Since the
two wall-parallel directions are homogeneous and periodic, it is
natural to solve the Poisson equation using a Fourier expansion
in two dimensions. To do so, modified wavenumbers are used,
instead of the real ones. Modified wavenumbers for the solution of
a Poisson equation by finite-differences are mainly used to ensure
the free divergence of the discrete velocity field. Since trigonomet-
ric expansions are used only in two directions the Poisson solver
would have spectral accuracy in two directions and second-order
accuracy in the third. This introduces an undesired spatial numeri-
cal anisotropy that might perturb the flow physics. Thus, modified
wavenumbers prevent the Laplacian from having higher accuracy
in some directions [29]. In the limit of infinite points, i.e. ∆y → 0,
the modified wavenumbers converge to the real wavenumbers. In
the CPU version, the Fast Fourier Transforms (FFT) are performed
using the open source FFTW (http://www.fftw.org/) library.

By using a second-order approximation for the partial deriva-
tives in the wall-bounded directions, the Poisson equation is re-
duced by two-dimensional fast Fourier transforms to a series of
one-dimensional Poisson equations that are easily inverted by a
tridiagonal Thomas solver. This allows for the direct solution of the
Poisson equation in a single step, with a residual round-off-error
velocity divergence (O(10−13) in double-precision arithmetics)
within O(NxNyNz log[Ny] log[Nz]) time complexity. Due to the do-
main decomposition, several data transposes must be performed
during the computation of the equation. The algorithm for solving
the Poisson equation is as follows:

1. Calculate the local divergence from the x-decomposed ve-
locities.

2. Transpose the result of (1) from a x-decomposition to a
y-decomposition.

3. Perform a real-to-complex Fourier transform on (2) in the
y-direction.

4. Transpose (3) from a y-decomposition to z-decomposition.
5. Perform a complex-to-complex Fourier transform on (4) in

the z-direction.

http://www.fftw.org/

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

4 X. Zhu et al. / Computer Physics Communications () –

6. Transpose (5) from a z-decomposition to a x-decomposition.
7. Solve the linear system with a tridiagonal solver in the

x-direction.
8. Transpose the result of (7) from a x-decomposition to a

z-decomposition.
9. Perform a complex-to-complex inverse Fourier transform

on (8) in z-direction.
10. Transpose (9) from a z-decomposition to a y-decomposition.
11. Perform a complex-to-real inverse Fourier transformon (10)

in a y direction.
12. Transpose (11) from a y-decomposition to a

x-decomposition.

The last step outputs the scalar correction φ in real space,
decomposed in x-oriented pencils. Therefore, once the Poisson
equation is solved, the corrected velocities and pressures are com-
puted directly. The temperature and other scalars are advected and
the time sub-step is completed. For full details of the equations
that are solved, we refer the reader to Ref. [19]. The algorithm
outlined above only transposes one 3D array, making it very effi-
cient. The top row of Fig. 2 shows a schematic of the data arrange-
ment and the transposes needed to implement the algorithm in
the original CPU code. We wish to highlight that this algorithm
uses all possible data transposes. However, the standard 2DE-
COMP library only has four transpose schemes, namely trans-
pose_x_to_y, transpose_y_to_x, transpose_y_to_z, and
transpose_z_to_y, since these transpose routines are sufficient
to construct common spectral solvers. As the Poisson solver de-
scribed above requires transposes in all directions we have added
the transpose_x_to_z and transpose_z_to_x routines to the
2DECOMP library version that is distributed with AFiD. It can be
seen in Fig. 2 that the x-to-z and the z-to-x transposes need a
more complex structure than the other transposes, as a process
may need to transfer data to other processes which are not imme-
diate neighbors. Therefore, in the CPU version of the code, these
transposes have now been implemented using the more flexible
MPI_Neighbor_alltoallw calls available in MPI 3.0 instead
of the MPI_ALLTOALLV calls used for the other four transposes.
The added transpose routines are completely compatible with the
standard 2DECOMP format and the updated library can thus be
used in other codes straightforwardly. These new routines are not
incorporated in the library version found on the 2DECOMPwebsite,
but the updated 2DECOMP library can be downloaded fromhttps://
github.com/PhysicsofFluids/AFiD_GPU_opensource. The GPU ver-
sion uses a different transpose scheme that will be described later.

3. GPU implementation

In this sectionwe explain the details of theGPU implementation
of AFiD. It is now possible to program GPUs in several languages,
from the original CUDA C to the new OpenACC directive based
compilers. We decided to use CUDA Fortran (Section 3.1) as the
nature of the code, where most routines are nested do-loops,
allows the extensive use of CUF kernels (Section 3.2, kernel loop
directives), making the effort comparable to an OpenACC port,
while also retaining the possibility of using explicit code kernels
when needed. In addition, the explicit nature of data movement
in CUDA Fortran allows us to better optimize the CPU/GPU data
movement and network traffic, and to further increase code per-
formance. In Section 3.3 we describe the optimization of memory
usage, and in Section 3.4 we present the multi-GPU aspects of the
code. In addition, a new improved transpose scheme is introduced
in Section 3.5.

3.1. CUDA & CUDA Fortran

CUDA-enabled GPUs can contain anything from a few to thou-
sands of processor coreswhich are capable of running tens of thou-
sands of threads concurrently. To allow for the same CUDA code to
run efficiently on different GPUswith varying number of resources,
a hierarchy of resources exists both in physical hardware, and in
available programming models. In hardware, the processor cores
on a GPU are grouped into multiprocessors. The programming
model mimics this grouping: a subroutine, called a kernel, which
runs on the device, is launched with a grid of threads grouped into
thread blocks. Within a thread block data can be shared between
threads, and there is a fine-grained thread and data parallelism.
Thread blocks run independently of one another, which allows for
scalability in the programmingmodel: each block of threads can be
scheduled on any of the available multiprocessors within a GPU, in
any order, concurrently or sequentially, so that a compiled CUDA
program can execute on a device with any number of multipro-
cessors. This scheduling is performed behind the scenes, the CUDA
programmer needs only to partition the problem into coarse sub-
problems that can be solved independently in parallel by blocks
of threads, where each sub-problem is solved cooperatively in
parallel by all threadswithin the block. For the GPU runs, thewhole
computation is performed on the GPUs and all data are stored
on the GPUs for the entire duration of the simulation, however
in many simulations the data needs to be routed through CPU
memory for further parallel communication.

The CUDA platform also enables hybrid computing, where both
the host (CPU and its memory) and device (GPU and its mem-
ory) can be used to perform computations. From a performance
perspective, the bandwidth of the PCI bus is over an order of
magnitude less than the bandwidth between the device’s memory
and GPU, and therefore special emphasis needs to be placed on
limiting and hiding PCI traffic. For MPI applications, data transfers
between the host and device are required to transfer data between
MPI processes. Therefore, the use of asynchronous data transfers,
i.e. performing data transfers concurrently with computations,
becomes mandatory. In order to achieve this goal we resort to
chunked data transfers to ensure that the relatively slow transfers
between CPUs over the PCI bus can already start for the processed
data, while the GPUs are still performing calculations on the re-
maining data.

CUDA Fortran is essentially regular Fortran with a handful of
extensions that allow portions of the computation to be off-loaded
to theGPU. There are two compilers, at themoment, that are able to
parse these extensions, the PGI compiler (now freely available via
the community edition) and the IBMXLF compiler, which currently
implements a subset of CUDA Fortran, in particular it does not
have CUF kernels. Because we rely heavily on CUF kernels in our
GPU implementation, all the results presented in this paper are
obtained with the PGI compiler. CUDA Fortran has a series of
extensions, like the variable attributedevice usedwhen declaring
data that resides in GPU memory, the F2003 sourced allocation
construct and the flexibility of kernels which make porting much
easier. CUDA Fortran can automatically generate and invoke kernel
code from a region of host code containing tightly nested loops.
Such code is referred to as a CUF kernel. One can port code to the
device using CUF kernels without modifying the contents of the
loops using the following programming convention. The directive
will appear as a comment to the compiler if GPU code generation
is disabled or if the compiler does not support them (similar to the
OpenMP directives that are ignored if OpenMP is not enabled). The
contents of the loop are usually unaltered.

https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource
https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource
https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

X. Zhu et al. / Computer Physics Communications () – 5

Fig. 2. Comparison between the original transpose scheme implemented in the CPU version (top, see Section 2.2) and the one implemented in the GPU version (bottom, see
Section 3.5). Both transpose strategies start from the leftmost configuration, operate on the arrays, and transpose again ending up at the right-most configuration, solve the
Poisson equations, and transpose data back to the leftmost configuration.

subroutine CalcMaxCFL (cflm)
#i f de f USE_CUDA
use cudafor
use param , only : fp_kind ,nxm, &

dy=>dy_d , dz=>dz_d , &
udx3m=>udx3m_d

use local_arrays , only : vx=>vx_d , &
vy=>vy_d , &
vz=>vz_d

#else
use param , only : fp_kind ,nxm, dy , dz ,udx3m
use local_arrays , only : vx , vy , vz

#endif
use decomp_2d
use mpih
impl i c i t none
rea l (fp_kind) , intent (out) : : cflm
integer : : i , j , k , ip , jp , kp
rea l (fp_kind) : : qcf

cflm= rea l (0.00000001 , fp_kind)

! $cuf kernel do(3) <<<∗ ,∗>>>
do i =xs tar t (3) , xend (3)
ip= i +1
do j =xs tar t (2) , xend (2)
jp= j +1
do k=1 ,nxm
kp=k+1
qcf =(abs ((vz (k , j , i)+vz (k , j , ip))∗dz) &

+abs ((vy (k , j , i)+vy (k , jp , i))∗dy) &
+abs ((vx (k , j , i)+vx (kp , j , i))∗udx3m(k)))

cflm = max(cflm , qcf ∗0.5 _fp_kind)
enddo

enddo
enddo

c a l l MpiAllMaxRealScalar (cflm)
return
end

Listing 1: Routine to compute the maximum CFL number.

3.2. CUF kernels

One of the project goals was to have a code as close as possible
to the original CPU version. In order to accomplish this the GPU
implementation makes extensive use of the preprocessor and all
the GPU specific code and directives are guarded by USE_CUDA
macro. For the same F90 source file, a CPU object file can be
created with the standard optimization flags while a GPU version

can be created adding the ‘‘-O3 -DUSE_CUDA -Mcuda’’ flags. While
the GPU code needs to be compiled with the PGI compiler, the
CPU code can be compiled with any Fortran compiler. The build
system will build a copy of the code for GPU and one for CPU.
The original CPU code uses custom allocators that allocate and
initialize the arrays to zero. Some arrays are definedwith halo cells,
others only for the interior points. The 2DECOMP [35] library is
also using global starting indices. In order to make identical copies
on the GPU, we used the F2003 sourced allocation construct. It is
worthwhile to point out that in the present version of AFID-GPU all
data reside in theGPUmemoryduring all calculations, i.e. eachGPU
holds the data corresponding to the pencil it is assigned inmemory.
The CPUs and its corresponding memory are only used during
I/O operations and for data transfer between different processes
during the communication stages. This choice compatibility with
standard MPI implementations and therefore code portability.

Listing 1 shows an example of code modifications that allow
compilation of the same source code for both the host (by default)
and the GPU (by specifying the compiler option -DUSE_CUDA). As
we can see from the source code, the CUF kernel directives are very
simple to use. Once the compiler is aware that the 3 nested do loops
need to be parallelized, it automatically determines that cflm
requires a reduction. Using the renaming facilities when loading
the variables from the module, we ensure that the CUF kernel will
operate on arrays resident in GPU memory. We used CUF kernels
extensively, and only some routines are coded manually on the
GPU. One of these routines is the routine computing the statistics,
since the reduction operator is on a vector, and, at the moment,
CUF reductions only work on scalars. Note that by ‘‘statistics’’ we
refer to physical quantities of interest, e.g. vertical mean velocity
and temperature profiles. Since the considered flow is horizontally
homogeneous, these physical quantities need to be averaged in
both horizontal directions, which requires the mentioned reduc-
tion operation.We also wrote batched tridiagonal solvers in which
each thread solves a different system with the Thomas algorithm
using the locally available data and routines to transpose local
arrays. These transposes are needed to optimize the memory lay-
out before computationally intensive parts such as the tridiagonal
solvers or FFT’s, for which we use the CUFFT library. For the actual
implementationswe refer the reader to the code available at https:
//github.com/PhysicsofFluids/AFiD_GPU_opensource.

3.3. Reducing the memory footprint

With the computational power of the GPUs, the memory foot-
print becomes the limiting factor in increasing the resolution of the

https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource
https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource
https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

6 X. Zhu et al. / Computer Physics Communications () –

simulations. Reducing the memory footprint becomes one of the
main objectives. While there are now GPUs with up to 24 GB of
memory, in most large systems the GPUs are older, and have less
capacity, typically being 6 GB to 12 GB. Thus, even reducing the
number of 3D arrays by a single unit results in relevant benefits.
Since several routines require storing data that is only needed
temporarily, either as an intermediate result or to transform the
data layout, we are able to reduce thememory footprint by reusing
the memory for these arrays as much as possible. In particular,
there are two work arrays used in the Poisson solver that are
used for either complex or real data types. In Fortran77, it was
possible to use the equivalence statement to have the two arrays
sharing the same memory. While equivalence is still supported
(but deprecated) in Fortran90, it only works with statically defined
arrays and the memory allocation in AFiD is all dynamic. Using
the iso_c_binding, it is possible to reproduce the behavior of
equivalence:

complex, target, allocatable:: complex_vec(:)
type(c_ptr):: cptr
real, pointer:: real_vec(:)

allocate(complex_vec(N))
cptr=c_loc(complex_vec)
call c_f_pointer(cptr,real_vec, &
[2*size(complex_vec,1)])

This approach works for both CPU and GPU arrays (if the arrays are
declared with the device attribute). Another area where memory
can be reduced is in the workspace that is used by the FFT library.
When creating an FFT plan with CUFFT, a workspace is allocated
by the library which is roughly the same size as the data that will
be processed by the plan. Since the four FFT plans in the solver
will not be used simultaneously, we can reuse the same storage
for all the workspaces by creating the FFT plans with the new
CUFFT plan management application program interface (API, here
we use NVTX which is introduced in Appendix B) that allows the
programmer to provide the workspace memory. The initial GPU
version of the code needed 48 K20x to run a 10243 grid, the final
version can now run on 25 K20x with 6 GB of memory.

3.4. Multi GPU implementation

In the GPU implementation, we map each MPI rank to a GPU.
The code discovers the available GPUs on each node and makes
a 1:1 mapping between ranks and GPUs, as described in [36]. In
the basic version of the code the whole computation is performed
on the GPUs, and the CPUs are only used for I/O and to stage
the data needed during the communication phases. There are
MPI implementations that are GPU-aware and allow to use data
resident in GPU memory directly in MPI calls, but for this initial
version we used standard MPI to have a more portable code, so
the data needs to be resident in CPU memory before the MPI calls.
Instead of using MPI_ALLTOALL or MPI_NEIGHBOR_ALLTOALLW
calls, we used a combination of IRECV/ISEND together with cud-
aMemcpy2DAsync to better overlap transfer to/from GPUmemory
from/to CPU memory and computations [37].

3.5. Efficient data transposes

AFiD was designed for high Reynolds number simulations and
its parallel implementation is deeply tied to the underlying nu-
merical scheme. As explained in Section 2.2, the code only needs
to solve implicitly in the wall normal direction. AFiD uses a two-
dimensional pencil decomposition aligned in the wall normal
direction. Per time step, only six all-to-all communications are
required, and these are all found in the Poisson solver for the
pressure correction. The original 2DECOMP library had only four

transposes available (no x-to-z and z-to-x, since the library was
designed for full spectral solvers for which there is no need to
go back to the original vertical decomposition). The AFiD code
added the x-to-z and z-to-x transposes using the new MPI 3.0
MPI_Neighbor_alltoallw calls. Since in the GPU implementa-
tion we want to use combination of IRECV/ISEND calls that allow
a better overlap of data transfer from/to GPU, this required a new
transpose scheme. If we relax the constraint that the tridiagonal
solvers are solved in a decomposition identical to the original one
in which the right hand side (local divergence) of the Poisson
equation was computed, we can devise a more efficient transpose.
As shown in the bottom part of Fig. 2, if we apply another rotation
from z to x (similar to what we would do with a Rubik’s cube),
each processor will only exchange data with other processors in
the same row sub-communicator, similar to the previous stages
and use combination of IRECV/ISEND calls. We are still using the
2DECOMP library to do the book keeping, and since the library uses
global indices for addressing, we just need to access the proper
wavenumbers to solve the tridiagonal systems. In principle, this
new transpose scheme is applicable for the CPUversion of the code.
However, this has not been implemented yet in the CPU version of
the code.

4. Code performance

In this section we first explain in Section 4.1 how the two
dimensional decomposition is used before we explain the detailed
performance tests in Section 4.2. We note that we use CPU and
cores indistinctly, but when we refer to the number of CPUs or
cores belowwe always refer to the number of computational cores.

4.1. Optimal configuration

Given the processor count, the code is able to find the optimal
processor grid configuration. This is very important in production
runs to efficiently use the allocated resources. The code will factor
the total number of MPI tasks and try all the possible configura-
tions, executing the transpose communication routines for a single
substep (six transposes required for the Poisson solver), including
the halo-exchange time. For the CPU version we measured the
performance of the full simulation code to determine the most
promising configuration. For the GPU version, with a low processor
count, the optimal configurations are generally of the form 1 × N .

This is because four of the six transpositions are among proces-
sors in the first dimension (xy and xz directions), while only two
transpositions are among processors in the second dimension (yz
direction). Thus, a 1×N willminimize the amount of data thatmust
be communicated between processors during the Poisson solver
transpose routines. However, as the processor count is increased,
the halo-exchange time becomes more dominant, and the best
configuration becomes the two-dimensional decompositionwhich
minimizes the halo-exchange communications for the GPU version
of the code. Examples of the optimal configuration search for the
CPU and GPU codes respectively can be found in Tables 1 and 2.
It is also important to notice that the shape of the decomposition
affects the strong scaling since the decomposition changes from1D
to 2D when increasing the processor count.

4.2. Performance comparison

All the cases that are shown in this manuscript have been per-
formed with both the CPU and GPU versions of the code. The GPU
results are identical to the CPU results up to machine precision,
which indicates that the CPU and GPU versions of the code are
consistent.

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

X. Zhu et al. / Computer Physics Communications () – 7

Fig. 3. Performance of AFiD on CPU and GPU. (a) Speedup. (b) Wall-clock time
per time step vs the number of cores. For a fixed grid resolution an increase in
this computational time is due to increased communication. With increasing grid
resolution the required number of computations increases by more than a factor N
due to the pressure solver. (c) CPU time per grid point per time step for the different
test cases. The symbol color indicates the grid size, the solid and open symbols
indicatewhether the testwas performed on CPU or GPU,while the symbol indicates
the CPU/GPU model.

Table 1
An example of the generation of the optimal pro-
cessor grid configuration for the CPU code.

In auto-tuning mode. . .

Processor grid 2 by 512 time = 0.433 s
Processor grid 4 by 256 time = 8.241E−002 s
Processor grid 8 by 128 time = 4.342E−002 s
Processor grid 16 by 64 time = 3.173E−002 s
Processor grid 32 by 32 time = 3.014E−002 s
Processor grid 64 by 16 time = 4.255E−002 s
Processor grid 128 by 8 time = 6.577E−002 s
Processor grid 256 by 4 time = 0.121 s
Processor grid 512 by 2 time = 0.230 s
The best processor grid is probably 32 by 32

Table 2
An example of the generation of the optimal pro-
cessor grid configuration for the GPU code.

In auto-tuning mode. . .

Processor grid 1 by 18 time = 0.3238 s
Processor grid 2 by 9 time = 0.8386 s
Processor grid 3 by 6 time = 0.9210 s
Processor grid 6 by 3 time = 0.9363 s
Processor grid 9 by 2 time = 0.8577 s
Processor grid 18 by 1 time = 0.5901 s

The best processor grid is probably 1 by 18

The GPU runs were performed on two systems, the accelerator
island of Cartesius at SURFsara and Piz Daint at the Swiss National
Supercomputing Center (CSCS). The accelerator island of Cartesius
consists of 66 Bullx B515 GPGPU accelerated nodes, each with two
8-core 2.5 GHz Intel Xeon E5-2450 v2 (Ivy Bridge) CPUs, 96 GB of
memory and two 12 GB NVidia Tesla K40mGPUs. Every node has a
FDR InfiniBand adapter providing 56 Gbit/s inter-node bandwidth.

Piz Daint was originally a Cray XC30 with 5272 nodes, each
with an 8-core Intel Xeon E5-2670 v2 processor, 32 GB of system
memory and a 6 GB NVidia K20X GPU. It has been upgraded to
a Cray XC50 in November 2016. The compute nodes now have a
12-core Intel Xeon E5-2690 v3 processor, 64 GB of systemmemory
and a 16 GB Nvidia P100 GPU. The new Pascal P100 GPU has
720 GB/s of peak memory bandwidth (and can sustain more than
500 GB/s in the STREAM benchmark) and more than 4.5 teraflops
of double precision performance. The network is the same before
and after the upgrade, and it uses the Aries routing and commu-
nications ASICs and a dragonfly network topology. Piz Daint is
one of the most efficient petaflop class machines in the world:
in the Green 500 list published in November 2013, the machine
with XC30 nodes was able to achieve 3186 Mflops/W with level
3 measurements, the most accurate available. In June 2017, with
the upgrades XC50 nodes, the machine was able to achieve 10,398
Mflops/W, more than tripling the power efficiency.

The physical problem used to test the scaling is of the Rayleigh–
Bénard flow, which will be explained in detail in Section 5. The
computational time per time step for a given grid resolution does
not depend on the Rayleigh–Bénard control parameters. We mea-
sured the performance of the new accelerated code and compared
it to the CPU performance reported in [19] on the Curie thin nodes
(dual 8-core E5-2680 Sandy Bridge EP 2.7 GHz with 64 GB of
memory and a full fat tree Infiniband QDR network) and with new
measurement on Cartesius Haswell thin node islands (2 × 12-
core 2.6 GHz Intel Xeon E5-2690 v3 Haswell nodes) with 64 GB
of memory per node and 56 Gbit/s inter-node FDR InfiniBand, with
an inter-island latency of 3 µs.

Here we supply the memory bandwidth and flops of the CPUs
that are used to test the code. The Sandy Bridge cores on Curie have
a peakmemory bandwidth of 3.2 GB/s with a performance of 21.60
gigaflops. The Haswell cores on Cartesius have a peak memory
bandwidth of 2.85 GB/s and a performance of 41.6 gigaflops. The
K20X GPU cards on Piz Daint have a peak memory bandwidth of
250 GB/s and a performance of 1312 gigaflops, while the P100
GPU cards have a peak memory bandwidth of 732 GB/s and a
performance of 4761 gigaflops.

Fig. 3 shows the scaling data obtained for the CPU and GPU
versions of the code. Panel (a) shows that both the CPU and GPU
versions of the code show strong scaling on grids ranging from
5123 up to 2048 ×3072 ×3072. Panel (c) combines a weak and
strong scaling test together. This panel indicates the performance
of the code for different grid sizes. One can see that for the cases
considered here the normalized performance (and therefore the
weak scaling of the code) is excellent. It can also be seen that the
required number of GPUs to obtain the same wall-clock time as
with the CPU version of the code is much smaller. Moreover, the
figure reveals that we now obtain a better performance and scaling
with the CPU version of the code than before, see [19].We find that
for 1024 cores the new code tested on Haswell is about 26% faster
than the previous code version that was tested on Sandy bridge,
while the difference is about 60% for 8192 cores. The much better
performance on the higher core numbers we therefore ascribe to
the code improvements. If we focus on the 20483 grid (Table 3),
simulations performedon1024K20XGPUs are 20 times faster than
on 1024Haswell cores. As indicated above, thememory bandwidth
ratio between the two is about 88, while the ratio in peak flop rate
is about 31.5. The performance ratio between the two is about a

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

8 X. Zhu et al. / Computer Physics Communications () –

Table 3
Wall-clock time per step on a 20483 grid. In the CPU simulations there are as many
MPI tasks as CPU cores. In the GPU simulation, there are as manyMPI tasks as GPUs.
This table compares the performance on a node level.

Nodes Curie Cartesius Piz Daint

Xeon E5-2680 Xeon E5-2690 Tesla K20x P100

Cores Time Cores Time GPUs Time Time

32 – – 768 18.70 s – – –
64 1024 18.10 s 1536 9.58 s – – –

128 2048 11.18 s 3572 5.25 s – – 2.57 s
256 4096 6.38 s 6144 2.82 s 256 2.85 s 1.42 s
512 8192 3.33 s 12288 2.03 s 512 1.40 s 0.85 s

1024 16384 2.77 s – – 1024 0.74 s 0.46 s
2048 – – – – 2048 0.50 s –
4096 – – – – 4096 0.34 s –

Table 4
Wall-clock time per step on a 2048 × 3072 × 3072 grid. Comparison between the
XC30 nodes with Tesla K20X GPUs vs XC50 nodes with Tesla P100 GPUs. Note that
scaling tests were performed on 2n GPU cards and the minimum number of GPU
cards that is required.

Nodes Configuration K20X P100

180 1 × 180 – 4.25 s
256 1 × 256 – 2.7 s
512 1 × 512 – 1.95 s
640 64 × 10 2.4 s –

1024 64 × 16 1.58 s 1.00 s
2048 64 × 32 0.88 s 0.5 s
4096 64 × 64 0.57 s 0.36 s

factor 12 when 4096 GPUs or CPUs are considered. Table 4 shows a
comparison between the old XC30 nodes and the new XC50 nodes
on Piz Daint for a larger problem on a 2048 ×3072 ×3072 mesh.
We can notice the switch from the 1D decomposition to the 2D
decomposition when increasing the processor count. The larger
memory on the P100 (16 GB) vs K20X (6 GB) makes it possible to
run this simulation on 180 nodes andwill also allow the use of even
finer meshes.

Comparing the results for the K20X and P100 GPUs we find that
the code runs about 40% faster on the latter, while both the peak
performance (times 3.62) and the maximum bandwidth (times
2.93) have increased more. The reason for this is that the Piz Daint
network was not upgraded when upgrading from K20X to P100
GPUs. This emphasizes that, although the CPU and GPU mem-
ory bandwidth are important, also other factors such as network
connections can significantly influence our code performance. In
Fig. 3(b) we see that 128 P100 GPUs have similar performance as
about 6000 Haswell CPU cores and while the CPU code is reaching
a plateau in efficiency, the GPU code can still scale very well and
bring thewall-clock time to levels unreachable by the CPU version.
Since wall-clock time is a very important metric for DNS this is a
crucial benefit of theGPU version of the code. Table 3 shows that on
a XC50 nodewith a single P100 GPU is about twice as fast as a Xeon
E5-2690Haswell nodewith 24 cores. Its also important to note that
Fig. 3(b) shows that for large grids the wall-clock time per time
step can be about an order of magnitude lower on a GPU platform
than on a CPU platform while maintaining good computational
efficiency, i.e. a good strong scaling performance.

5. Validation

5.1. Rayleigh–Bénard convection

We simulated Rayleigh–Bénard convection in an aspect ratio
Γ = L/H = 1 cell, where L indicates the streamwise and spanwise
domain lengths compared to the domain height H . The control
parameters of the system are the non-dimensional temperature

Table 5
The employed Rayleigh numbers Ra and grid resolution in the horizontal Nz × Ny
and wall-normal Nx directions, and the extracted Nu from the simulations. For all
cases the Prandtl number Pr and aspect ratio Γ are unity.

Ra Nz × Ny × Nx Nu

107 256 × 256 × 192 17.17
108 384 × 384 × 256 32.20
109 512 × 512 × 384 64.13
1010 768 × 768 × 512 132.68
1011 768 × 768 × 1296 275.33

difference between the plates, i.e. the Rayleigh number Ra, and the
fluid Prandtl number, see Refs. [1,19] for more details.

To test the code we look at the main response parameter of
the Rayleigh–Bénard system, which is the non-dimensional heat
transport between the two plates, i.e. the Nusselt number. Table 5
shows the simulation details and the extracted Nusselt number for
each simulation. In Fig. 4 we show snapshots of the flow obtained
at different Rayleigh number. The figures reveal that the flow struc-
tures rapidly decrease with increasing Rayleigh, illustrating the
need of powerful computer codes to simulate very high Rayleigh
number flows.

In Fig. 5, we show the obtained Nusselt number vs Rayleigh
number compared against experimental data [13,41–50] and the
predictions by the Grossmann–Lohse theory [38–40]. The figure
shows that experiments, simulations, and theory are in very good
agreement with each other up to Ra = 1011. This figure also shows
that there are two facilities (in Grenoble [42,51,52]) which show
an increased Nusselt number already around Ra = 5 × 1011,
while other experiments (in Göttingen [13,48,53,54]) show this
transitions around Ra∗

1 ≈ 2 × 1013 and Ra∗

2 ≈ 7 × 1013. There
is no clear explanation for the mentioned disagreement although
it is conjectured that unavoidable variations of the Prandtl num-
ber [1,55], finite conductivity [1,55–57] of the horizontal plates
and sidewall [58–60], non Oberbeck–Boussinesq effects [61–65],
i.e. the dependence of the fluid properties on the temperature, and
even wall roughness [66,67] and temperature conditions outside
the cell might play a role. So far the origin of this discrepancy could
never be settled, in spite of major efforts. For more information on
this topic, we refer the readers to Refs. [1,3].

In order to help to clarify these issues it is important to perform
DNS with the precise assignment of the temperature boundary
conditions (i.e. strictly constant temperature horizontal plates and
adiabatic sidewall), infinitely smooth surfaces and unconditional
validity of the Boussinesq approximation, i.e. the fluid properties
do not depend on the temperature, which is hard coded in the
model equations. In addition, in contrast to experiments, numer-
ical simulations of turbulent flows have the huge advantage that
all quantities of the flow are fully accessible while it is possible
to adjust the control parameters arbitrarily with the goal to better
understand the physics of the system. Our desire to study the tran-
sition to the ultimate Rayleigh–Bénard convection in simulations
motivates our development of ever more powerful simulation
codes. It should be noted that Fig. 4 shows that the GPU code
already allows one to perform large simulations in a much shorter
wall-clock time, which makes the execution of such simulations
much more practical.

5.2. Plane Couette flow

Now we test the code with the plane Couette configuration at
bulk Reynolds number Rec = 3000. The two walls here move with
the same speed uc but in the opposite direction. Table 6 shows the
employed parameters and the output friction velocity. To capture
the large scale structure of plane Couette, a rather large domain
size as 18πh× 8πh× 2h, where h is the half height of the channel,

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

X. Zhu et al. / Computer Physics Communications () – 9

Fig. 4. Visualization of the temperature field at Ra = 109 and Ra = 1011 (rendered on a coarser grid than used during the simulation) for Pr = 1 in a horizontally periodic
Γ = 1 cell. The colorbar indicates the non-dimensional temperature, with the range of 0.2 (blue) to 0.8 (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. The dimensionless heat flux, i.e. the Nusselt number Nu, as a function
of the dimensionless temperature difference between the plates, i.e. the Rayleigh
number Ra, obtained using AFiD, in the compensated way, in comparison with the
Grossmann–Lohse theory [38–40] and with the experimental data from Castaing
et al. [41], Roche et al. [42], Fleischer &Goldstein [43], Chaumat et al. [44], Chavanne
et al. [45], Niemela et al. [46], Ahlers et al. [47,48], He et al. [13], and Urban
et al. [49,50]. The experimental data and GL theory presented in this figure are the
same as in Ref. [40].

has to be used. The resulting friction Reynolds number Reτ = 171,
which is in excellent agreement with the previous results for the
same configuration [14].

The streamwisemean velocity profile is shown in Fig. 6, normal-
ized with either the wall velocity uc or friction velocity uτ . Again,
excellent agreement has been found between the current study
and Ref. [14]. For Fig. 6(b), two clear layers can be identified. When
y+ < 5, the profile follows u+

= y+, which is called the viscous
layer;When 50 < y+ < 171, a clear logarithmic layer is seen, with
u+

= 1/κ lny+
+ C , where κ ≈ 0.41 and C ≈ 5.0.

Fig. 7 shows the large scale flow structure of the plane Couette
flow. Distinctive patterns of high and low speed streaks are evi-
dent, which maintains the coherence along the whole streamwise
length of the channel, while also showing some meandering. The
spanwise width of the large scale structure is 4 to 5h, as also
shown in previous studies [14,68]. The above findings demonstrate
the necessity for extremely large box to capture the biggest flow

Fig. 6. Mean velocity profiles in plane Couette flow scaled with (a) the wall moving
velocity uc and (b) friction velocity u+

= u/uτ . η is the dimensionless wall
normal coordinate scaled with the channel half height h, in the way that η = 0
corresponds to the channel centerline and η = ±1 corresponds to the two walls.
y+

= uτ (η+1)/ν is the dimensionless distance in wall units. The AFiD results agree
excellently with the DNS from Pirozzoli et al. [14].

structure in plane Couette flow. This is the reason the biggest DNS
for plane Couette flow only reached Reτ ≈ 1000 [14], while for
channel flow Reτ ≈ 5200 [6] is already obtained.

With this GPU version of the code, our goal is to study on the
one hand even bigger box sizes, which will help understand how
big the large scale structure can really be. On the other hand, we
want to study higher Reynolds number plane Couette flow, which
will help understand how far the logarithmic layer can extend and
whether the attached eddy hypothesis [69] is applicable for plane
Couette flow.

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

10 X. Zhu et al. / Computer Physics Communications () –

Fig. 7. Contours of the instantaneous streamwise flow velocity in (a) the channel
center, (b) cross-spanwise view, and (c) cross-streamwise view.

Table 6
List of parameters for the plane Couette flow case. Here Rec = huc/ν is the bulk
Reynolds number and h is the channel half height, uc the moving velocity of wall,
ν the kinematic viscosity. The second column shows the computational box. The
third column shows the grid resolution. The last column is the friction Reynolds
number Reτ = huτ /ν, where uτ is defined as uτ =

√
τw/ρ, in which τw is the wall

shear stress. Note that Reτ is a result of the simulation.

Rec Lz × Ly × Lx Nz × Ny × Nx Reτ

3000 18πh × 8πh × 2h 1280 × 1024 × 256 171

6. Conclusions and future plans

In this paper we presented a GPU accelerated solver that can
be used to study various wall-bounded flows [1,2,7,8,69–73]. Our
work is motived by the need to simulate more extreme turbulent
flows and inspired by the observation that while high performance
computing shifts towards GPUs and accelerators, obtaining an
efficient GPU code, that is faster than is CPU, is thought to be a
very time consuming, code specific, undertaking. In this paper we
showed that to port CPU code to the GPU, only ‘‘minimal effort’’
is required. In addition, we show that for large grids the GPU code
obtains good computational efficiency forwall-clock times that are
an order of magnitude smaller than what can be achieved with
the CPU code. In this work we presented some efficient coding
techniques, such as overloaded sourced allocation andhowmodule
use/renaming can be used to avoid modifying loop contents that
have not been covered elsewhere. In addition, we point out that
this approach allows for easy code validation, since every subrou-
tine can be examined to produce the same results as the original
CPU code up to the machine precision. This approach is generally
applicable and an eye opener for many scientists thinking about
GPU porting.

Previous work to parallelize second-order finite-difference
solvers allowed us to reach extremely high Reynolds numbers
in Taylor–Couette flow [74], and also to simulate Taylor–Couette
flow with riblets in the flow direction and notches perpendicu-
lar to the flow direction to disentangle the effects of roughness
on the torque [75,76]. For Rayleigh–Bénard convection we have
used the AFiD code to simulate unprecedentedly large horizontal
domains to investigate the formation of thermal superstructures
in Rayleigh–Bénard [20]. The need to obtain ever more efficient
codes is illustrated by example use cases of high Rayleigh number
turbulent Rayleigh–Bénard convection and high Reynolds number
plane Couette flow. We have shown in Section 5 that our code can
work perfectly for both cases. With the GPU code described here,

the capability of the code is improved even further. Initial works
have been started to simulate the Rayleigh–Bénard flows with
external shearing by using the GPU version. It should be pointed
out that the code can also be used to simulate other wall-turbulent
flow configurations such as channel flow at high Reynolds number.

In order to further expand the capabilities of the code, we are
going to work on several fronts. The first one will be to utilize
the CPU cores, which are completely idle in the basic code version
described here, together with the GPUs in the implicit part of the
solver. We are more interested in the CPU memory than the CPU
flops, but depending on the node configuration, the CPU cores can
give a good performance boost. Subdividing each vertical domain
in two subdomains, we can process one on the CPU and one on
the GPU. The relative size of the subdomains can be determined at
runtime, since the workload per cell is constant. The split is in the
outermost dimension (z) and requires additional halo exchanges
(but these are local memory transfers of contiguous data between
GPU and CPU, so no network is involved). A preliminary version
of this hybrid CPU–GPU code is available in the open-source code,
which will be discussed in detail in a forthcoming paper, and is
currently being tested.

As explained above the code is GPU-centric, which means that
all data required for computations resides in the GPU memory.
Since writing the HDF5 files to disk could be time consuming,
we are thinking about making this process asynchronous, once
the solution is copied to CPU memory, the GPU can advance the
solution while the CPUs complete the I/O.

Another way to optimize the simulations is to use a multiple
resolution approach, using a grid for the temperature field with
a higher spatial resolution than that for the momentum, as inte-
grating both fields on a single grid tailored to the most demand-
ing variable produces an unnecessary computational overhead.
This approach gives significant savings in computational time and
memory occupancy as most resources are spent on solving the
momentum equations (about 80%–90%). To ensure stable time
integration of the temperature field we use a separate refined time
step procedure for the temperature field. The full details of the
strategy are described in [28].

TheGPUcode is available at https://github.com/PhysicsofFluids/
AFiD_GPU_opensource.

Acknowledgments

We thank Alexander Blass for providing the data on the plane
Couette flow. This work was supported by a grant from the
Swiss National Supercomputing Center (CSCS) under project ID
g33 and by the Netherlands Center for Multiscale Catalytic En-
ergy Conversion (MCEC), an NWO Gravitation program funded
by the Ministry of Education, Culture and Science of the govern-
ment of the Netherlands, the Foundation for Fundamental Matter
(FOM) in the Netherlands, and the ERC Advanced Grant ‘‘Physics
of boiling’’. We also acknowledge PRACE for awarding us access to
FERMI and Marconi based in Italy at CINECA under PRACE project
number 2015133124 and 2016143351 and NWO for granting us
computational time on Cartesius from the Dutch Supercomputing
Consortium SURFsara and for the continuous support we get from
SURFsara on code development.

Appendix A. Remarks on the location of temperature in the
mesh

In a Boussinesq fluid temperature T and density ρ are related by
(ρ − ρ0)/ρ0 = −α(T − T0), ρ0, T0 being the reference state where
the fluid is at rest. Then, if the gravity vector g is anti-parallel to the

https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource
https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource
https://github.com/PhysicsofFluids/AFiD%5FGPU%5Fopensource

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

X. Zhu et al. / Computer Physics Communications () – 11

Fig. 8. Profiler output from AFiD-GPU for a parallel run on a 10243 grid.

x direction, the equations of motion can be written as:

∂u
∂t

+ u · ∇u = −
∇p
ρ0

+
gx̂ρ
ρ0

+ ν∇
2u,

∂ρ

∂t
+ u · ∇ρ = +κ∇

2ρ,

with ν and κ the diffusivities of momentum and density, respec-
tively and x̂ the unit vector in the vertical direction. If the velocity
has components u = (u, v, w) we can define the kinetic energy
as Ek = ρ0

∫
V (u

2
+ v2

+ w2)dV/2 and the potential energy
Ep =

∫
V ρgxdV and derive from the above equations the energy

balance for Ek and Ep. The detailed derivation can be found inmany
papers (e.g. Ref. [77]), here it suffices to mention that for a laterally
confined (or periodic) fluid and for vanishing diffusivities (ν and κ)
the balance equations reduce to

dEk
dt

= −

∫
V

ρgwdV ,

dEp
dt

= +

∫
V

ρgwdV .

These equations simply state that the buoyancy flux is the re-
versible rate of change of potential energy that is converted into
kinetic energy and vice versa. It is also easy to show that the rate
of change of Ek + Ep is zero since the two source terms cancel
out. This is true, however only if the two terms are computed in
the same way also at the discrete level and in order for this to
be true ρ (or T) and w must be placed at the same position in
the computational cell. If w and ρ were staggered by ∆/2 the
local source term would be computed as gwi(ρi + ρi−1)/2 in the
kinetic energy equation and gρi(wi + wi+1)/2 in the potential
energy equation and the two integrals would not cancel out. Thus,
to ensure energy conservation, temperature is placed at the same
location as the vertical velocity in the mesh.

Appendix B. Profiling using NVTX

Profiling is an essential part of performance tuning used to
identify parts of the code that may require additional attention.
When dealing with GPU codes, profiling is even more important
as new opportunities for better interactions between the CPUs
and the GPUs can be discovered. The standard profiling tools in
CUDA, nvprof and nvvp, are able to show the GPU timeline but
do not present CPU activity. The NVIDIA Tools Extension (NVTX)

is a C-based API (application program interface) to annotate the
profiler time line with events and ranges and to customize their
appearance and assign names to resources such as CPU threads and
devices [78].

We have written a Fortran module to instrument CUDA/
OpenACC Fortran codes using the Fortran ISO C bindings [79]. To
eliminate profiling overhead during production runs, we use a pre-
processor variable to make the profiling calls return immediately.
During the runs, one or more MPI processes generate the traces
that are later imported and visualizedwith nvvp, theNVIDIAVisual
Profiler. Fig. 8 shows an example of the output for AFiD_GPU on
a 10243 mesh, where on the top part ‘‘process AFiD GPU’’ the
CPU sections can be identified while the GPU sections are on the
lower ‘‘Tesla K20x’’ section. The profiler is visualizing the output
from one of the ranks. Since the run was on a 1 × 16 processor
grid, we can see that after the computation of the local divergence
(red box labeled CalcLocal) the first transpose, TranXY, does not
require MPI communications. The following one, TranYZ, requires
MPI communications and we can see the overlapping of Memcopy
DtoH (device to host) and HtoD (host to device) with MPI calls.

References

[1] G. Ahlers, S. Grossmann, D. Lohse, Rev. Modern Phys. 81 (2009) 503.
[2] D. Lohse, K.-Q. Xia, Annu. Rev. Fluid Mech. 42 (2010) 335–364.
[3] F. Chilla, J. Schumacher, Eur. Phys. J. E 35 (2012) 58.
[4] B. Eckhardt, T. Schneider, B. Hof, J. Westerweel, Annu. Rev. Fluid Mech. 39

(2007) 447–468.
[5] J. Kim, P. Moin, R. Moser, J. Fluid Mech. 177 (1987) 133–166.
[6] M. Lee, R.D. Moser, J. Fuid Mech. 774 (2015) 395–415.
[7] M.A. Fardin, C. Perge, N. Taberlet, Soft Matter 10 (2014) 3523–3535.
[8] S. Grossmann, D. Lohse, C. Sun, Annu. Rev. Fluid Mech 48 (2016) 53–80.
[9] D.L. Hartmann, L.A. Moy, Q. Fu, J. Clim. 14 (2001) 4495–4511.

[10] J. Marshall, F. Schott, Rev. Geophys. 37 (1999) 1–64.
[11] P. Cardin, P. Olson, Phys. Earth Planet. Inter. 82 (1994) 235–259.
[12] F. Cattaneo, T. Emonet, N. Weiss, Astrophys. J. 588 (2003) 1183–1198.
[13] X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, G. Ahlers, Phys. Rev. Lett.

108 (2012) 024502.
[14] S. Pirozzoli, M. Bernardini, P. Orlandi, J. Fluid Mech. 758 (2014) 327–343.
[15] H. Schlichting, K. Gersten, Boundary Layer Theory, eighth ed., Springer Verlag,

Berlin, 2000.
[16] F. Waleffe, Phys. Fluids 9 (4) (1997) 883–900.
[17] S. Pirozzoli, M. Bernardini, P. Orlandi, J. Fluid Mech. 680 (2011) 534–563.
[18] D.P. McKenzie, J.M. Roberts, N.O. Weiss, J. Fluid Mech. 62 (1974) 465–538.
[19] E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. & Fluids

116 (2015) 10–16.
[20] R.J.A.M. Stevens, A. Blass, X. Zhu, R. Verzicco, D. Lohse, Phys. Rev. Fluids

3 (041501(R)) (2018).

http://refhub.elsevier.com/S0010-4655(18)30098-5/sb1
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb2
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb3
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb4
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb4
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb4
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb5
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb6
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb7
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb8
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb9
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb10
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb11
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb12
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb13
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb13
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb13
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb14
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb15
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb15
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb15
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb16
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb17
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb18
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb19
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb19
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb19
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb20
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb20
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb20

Please cite this article in press as: X. Zhu, et al., AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Computer Physics
Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.026.

12 X. Zhu et al. / Computer Physics Communications () –

[21] V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D. Nguyen, N. Satish, M.
Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, P. Dubey, SIGARCH
Comput. Archit. News 38 (3) (2010) 451–460.

[22] P. Fischer, J. Lottes, S. Kerkemeier, A. Obabko, K. Heisey, nEK5000 webpage,
2008, http://nek5000.mcs.anl.gov.

[23] OpenFOAM, http://www.openfoam.org.
[24] C. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D.D.

Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied,
C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R. Kirby, S. Sherwin, Comput. Phys.
Comm. 192 (2015) 205–219.

[25] J.F. Gibson, Channelflow: A Spectral Navier–Stokes Simulator in C++, Tech.
Rep., U. New Hampshire, Channelflow.org, 2014.

[26] R.W. Schmitt, Annu. Rev. Fluid Mech. 26 (1) (1994) 255–285.
[27] P. Orlandi, Fluid Flow Phenomena: A Numerical Toolkit, Vol. 55, Springer

Science and Media, 2012.
[28] R. Ostilla-Mónico, Y. Yang, E.P. van der Poel, D. Lohse, R. Verzicco, J. Comput.

Phys. 301 (2015) 308–321.
[29] P. Moin, R. Verzicco, Eur. J. Mech. B Fluids 55 (2016) 242–245.
[30] M.M. Rai, P. Moin, J. Comput. Phys. 96 (1991) 15–53.
[31] A.J. Chorin, Bull. Amer. Math. Soc. 73 (6) (1967) 928–931.
[32] A.J. Chorin, Math. Comp. 22 (104) (1968) 745–762.
[33] M.J. Lee, B.D. Oh, Y.B. Kim, J. Comput. Phys. 168 (2001) 73–100.
[34] R. Verzicco, P. Orlandi, J. Comput. Phys. 123 (1996) 402–413.
[35] N. Li, S. Laizet, Cray User Group 2010 Conference, Edinburgh, 2010.
[36] G. Ruetsch, M. Fatica, CUDA Fortran for Scientists and Engineers, Morgan

Kaufmann, 2013.
[37] M. Bernaschi, M. Bisson,M. Fatica, E. Phillips, Eur. Phys. J. Spec. Top. 210 (2002)

17–31.
[38] S. Grossmann, D. Lohse, J. Fluid. Mech. 407 (2000) 27–56.
[39] S. Grossmann, D. Lohse, Phys. Rev. Lett. 86 (2001) 3316–3319.
[40] R.J.A.M. Stevens, E.P. van der Poel, S. Grossmann, D. Lohse, J. Fluid Mech. 730

(2013) 295–308.
[41] B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X.Z.

Wu, S. Zaleski, G. Zanetti, J. Fluid Mech. 204 (1989) 1–30.
[42] P.E. Roche, G. Gauthier, R. Kaiser, J. Salort, New J. Phys. 12 (2010) 085014.
[43] A.S. Fleischer, R.J. Goldstein, J. Fluid Mech. 469 (2002) 1–12.
[44] S. Chaumat, B. Castaing, F. Chilla, in: I.P. Castro, P.E. Hancock, T.G. Thomas

(Eds.), Advances in Turbulence IX, International Center for NumericalMethods
in Engineering, CIMNE, Barcelona, 2002.

[45] X. Chavanne, F. Chilla, B. Chabaud, B. Castaing, B. Hebral, Phys. Fluids 13 (2001)
1300–1320.

[46] J. Niemela, L. Skrbek, K.R. Sreenivasan, R. Donnelly, Nature 404 (2000) 837–
840.

[47] G. Ahlers, E. Bodenschatz, D. Funfschilling, J. Hogg, J. Fluid Mech. 641 (2009)
157–167.

[48] G. Ahlers, X. He, D. Funfschilling, E. Bodenschatz, New J. Phys. 14 (2012)
103012.

[49] P. Urban, V. Musilová, L. Skrbek, Phys. Rev. Lett. 107 (1) (2011) 014302.
[50] P. Urban, P. Hanzelka, T. Kralik, V. Musilova, A. Srnka, L. Skrbek, Phys. Rev. Lett.

109 (15) (2012) 154301.
[51] X. Chavanne, F. Chilla, B. Castaing, B. Hebral, B. Chabaud, J. Chaussy, Phys. Rev.

Lett. 79 (1997) 3648–3651.
[52] P.E. Roche, B. Castaing, B. Chabaud, B. Hebral, Phys. Rev. E 63 (2001) 045303.
[53] X. He, D. Funfschilling, E. Bodenschatz, G. Ahlers, New J. Phys. 14 (2012)

063030.
[54] X. He, D.P.M. vanGils, E. Bodenschatz, G. Ahlers, New J. Phys. 17 (2015) 063028.
[55] R.J.A.M. Stevens, D. Lohse, R. Verzicco, J. Fluid Mech. 688 (2011) 31–43.
[56] R. Verzicco, Phys. Fluids 16 (2004) 1965–1979.
[57] E. Brown, D. Funfschilling, A. Nikolaenko, G. Ahlers, Phys. Fluids 17 (2005)

075108.
[58] G. Ahlers, Phys. Rev. E 63 (2000) 015303(R).
[59] R. Verzicco, J. Fluid Mech. 473 (2002) 201–210.
[60] R.J.A.M. Stevens, D. Lohse, R. Verzicco, J. Fluid Mech 741 (2014) 1.
[61] G. Ahlers, E. Brown, F. Fontenele Araujo, D. Funfschilling, S. Grossmann, D.

Lohse, J. Fluid Mech. 569 (2006) 409–445.
[62] G. Ahlers, F. Fontenele Araujo, D. Funfschilling, S. Grossmann, D. Lohse, Phys.

Rev. Lett. 98 (2007) 054501.
[63] G. Ahlers, E. Calzavarini, F. Fontenele Araujo, D. Funfschilling, S. Grossmann, D.

Lohse, K. Sugiyama, Phys. Rev. E 77 (2008) 046302.
[64] K. Sugiyama, E. Calzavarini, S. Grossmann, D. Lohse, J. Fluid Mech. 637 (2009)

105–135.
[65] S. Horn, O. Shishkina, C. Wagner, J. Fluid Mech. 724 (2013) 175–202.
[66] J. Salort, O. Liot, E. Rusaouen, F. Seychelles, J.-C. Tisserand, M. Creyssels, B.

Castaing, F. Chilla, Phys. Fluids 26 (2014) 015112.
[67] S. Wagner, O. Shishkina, J. Fluid Mech. 763 (2015) 109–135.
[68] V. Avsarkisov, S. Hoyas, M. Oberlack, J. García-Galache, J. Fluid Mech. 751

(2014) R1.
[69] I.Marusic, B.J.McKeon, P.A.Monkewitz, H.M.Nagib, A.J. Smits, K.R. Sreenivasan,

Phys. Fluids 22 (6) (2010) 065103.
[70] A.J. Smits, B.J. McKeon, I. Marusic, Annu. Rev. Fluid Mech. 43 (2011) 353–375.
[71] J. Jimenez, Annu. Rev. Fluid Mech. 44 (2012) 27–45.
[72] A.J. Smits, I. Marusic, Phys. Today 66 (9) (2013) 25–30.
[73] I. Marusic, J.P. Monty, M. Hultmark, A.J. Smits, J. Fluid. Mech. 716 (2013) R3.
[74] R. Ostilla-Mónico, R. Verzicco, S. Grossmann, D. Lohse, J. FluidMech. 768 (2016)

95–117.
[75] X. Zhu, R. Ostilla-Mónico, R. Verzicco, D. Lohse, J. Fluid Mech. 794 (2016) 746–

774.
[76] X. Zhu, R. Verzicco, D. Lohse, J. Fluid Mech. 812 (2017) 279–293.
[77] K.B. Winters, P.N. Lombard, J.J. Riley, E.A. D’Asaro, J. Fluid Mech. 289 (1995)

115–128.
[78] http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-app

lication-profile-timelines-nvtx. (Accessed 9 April 2018).
[79] https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-

nvtx. (Accessed on 9 April 2018).

http://refhub.elsevier.com/S0010-4655(18)30098-5/sb21
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb21
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb21
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb21
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb21
http://nek5000.mcs.anl.gov
http://www.openfoam.org
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb24
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb24
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb24
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb24
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb24
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb24
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb24
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb25
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb25
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb25
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb26
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb27
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb27
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb27
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb28
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb28
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb28
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb29
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb30
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb31
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb32
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb33
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb34
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb36
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb36
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb36
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb37
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb37
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb37
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb38
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb39
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb40
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb40
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb40
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb41
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb41
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb41
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb42
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb43
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb44
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb44
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb44
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb44
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb44
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb45
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb45
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb45
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb46
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb46
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb46
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb47
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb47
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb47
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb48
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb48
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb48
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb49
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb50
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb50
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb50
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb51
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb51
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb51
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb52
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb53
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb53
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb53
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb54
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb55
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb56
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb57
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb57
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb57
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb58
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb59
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb60
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb61
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb61
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb61
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb62
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb62
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb62
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb63
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb63
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb63
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb64
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb64
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb64
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb65
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb66
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb66
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb66
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb67
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb68
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb68
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb68
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb69
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb69
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb69
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb70
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb71
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb72
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb73
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb74
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb74
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb74
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb75
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb75
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb75
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb76
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb77
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb77
http://refhub.elsevier.com/S0010-4655(18)30098-5/sb77
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx
https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx
https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx
https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx

	AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters
	Introduction
	AFiD code
	Numerical scheme
	Parallelization strategy

	GPU implementation
	CUDA & CUDA Fortran
	CUF kernels
	Reducing the memory footprint
	Multi GPU implementation
	Efficient data transposes

	Code performance
	Optimal configuration
	Performance comparison

	Validation
	Rayleigh–Benard convection
	Plane Couette flow

	Conclusions and future plans
	Acknowledgments
	Remarks on the location of temperature in the mesh
	Profiling using NVTX
	References

