
Computer Physics Communications 273 (2022) 108248

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

FSEI-GPU: GPU accelerated simulations of the

fluid–structure–electrophysiology interaction in the left heart !

Francesco Viola a, Vamsi Spandan b, Valentina Meschini c, Joshua Romero d,
Massimiliano Fatica d, Marco D. de Tullio e, Roberto Verzicco f,g,a,∗

a Gran Sasso Science Institute, L’Aquila, Italy
b John A. Paulson School of Engineering and Applied Sciences, Harvard University, USA
c Department of Mathematics, University of Rome Tor Vergata, Rome, Italy
d NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
e Department of Mechanics, Mathematics and Management, Politecnico di Bari, Italy
f Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
g Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Centre for Fluid Dynamics, University of Twente,
P.O. Box 217, 7500AE Enschede, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2021
Received in revised form 11 October 2021
Accepted 26 November 2021
Available online 10 December 2021

Keywords:
Fluid dynamics
Cardiovascular flows
Hemodynamics
Fluid-structure-interaction
Multiphysics model
Computational engineering

The reliability of cardiovascular computational models depends on the accurate solution of the hemo-
dynamics, the realistic characterization of the hyperelastic and electric properties of the tissues along
with the correct description of their interaction. The resulting fluid–structure–electrophysiology interac-
tion (FSEI) thus requires an immense computational power, usually available in large supercomputing
centers, and requires long time to obtain results even if multi–CPU processors are used (MPI accelera-
tion). In recent years, graphics processing units (GPUs) have emerged as a convenient platform for high
performance computing, as they allow for considerable reductions of the time–to–solution.
This approach is particularly appealing if the tool has to support medical decisions that require solutions
within reduced times and possibly obtained by local computational resources. Accordingly, our multi–
physics solver [1] has been ported to GPU architectures using CUDA Fortran to tackle fast and accurate
hemodynamics simulations of the human heart without resorting to large–scale supercomputers. This
work describes the use of CUDA to accelerate the FSEI on heterogeneous clusters, where both the CPUs
and GPUs are used in synergistically with minor modifications of the original source code. The resulting
GPU accelerated code solves a single heartbeat within a few hours (from three to ten depending on the
grid resolution) running on premises computing facility made of few GPU cards, which can be easily
installed in a medical laboratory or in a hospital, thus opening towards a systematic computational fluid
dynamics (CFD) aided diagnostic.

 2021 Published by Elsevier B.V.

1. Introduction

The human heart is a hollow muscular organ that pumps
blood throughout the body, to the lungs, and to its own tissue.
It drives the systemic–, pulmonary–, and coronary–circulations to
bring oxygen and nutrients to every body cell and to remove the
waste products. The heart achieves these fundamental goals by two
parallel volumetric pumps, the right and the left, which beat ap-
proximately 105 times per day to deliver a continuous flow rate of

! The review of this paper was arranged by Prof. W. Walker.

* Corresponding author at: Department of Industrial Engineering, University of
Rome Tor Vergata, Rome, Italy.

E-mail address: verzicco@uniroma2.it (R. Verzicco).

about 5 l/min with outstanding reliability. This is possible because
of the highly cooperative and interconnected dynamics of the heart
in which every element is key for the others. In a few words, each
heart beat is triggered by specialized pacemaker cells that gener-
ate rhythmical electrical impulses propagating along well defined
paths and with precise timings thus stimulating a sequence of
contractions driving the blood from atria to ventricles and even-
tually to the arteries. The resulting hemodynamics yields shear
stresses and pressure loads on the endocardium and on the valves,
whose opening/closing ensures the correct flow direction across
heart chambers: only the synchronized and synergistic action of
the myocardium electrophysiology, mechanics of the tissues and
hemodynamics allows the heart of an adult human to operate on
a power of only 8 W, lifelong.

https://doi.org/10.1016/j.cpc.2021.108248
0010-4655/ 2021 Published by Elsevier B.V.

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

Fig. 1. a) Computational domain of the human left heart. b) Sketch of the fluid–structure–electrophysiology (FSEI) coupling.

Such a perfect and highly sophisticated mechanism, in which
even a minor malfunctioning impairs its pumping efficiency, calls
for a complete study on account of the scientific, social, and eco-
nomic implications. Concerning the latter we note that cardio-
vascular disorders (CVD) are the main cause of population death
and health care costs of developed countries and, despite the ad-
vances of medical research, CVD expenditure projections for the
next decades are predicted to become unsustainable. This scenario
requires novel approaches that improve the effectiveness of the
available diagnostic tools without concurrently increasing the costs
further: computational science can be key for this purpose since it
can add predicting capabilities and improve the precision of many
of the current evidence based procedures [2]. Computer simula-
tions of the blood flow in the heart and arteries can be a precious
tool to improve the predicting capabilities of diagnostics, to re-
fine surgical techniques, and to test the performance of prosthetic
devices, see Fig. 1(a). However, the reliability of cardiovascular sim-
ulations depends on the accurate modeling of the hemodynamics,
the realistic characterization of the tissues, and the correct descrip-
tion of the fluid–structure–electrophysiology interaction (FSEI) [1].

Our group has made progress towards the development of a
fully–coupled multi–physics computational model for the heart. In
particular, the pulsatile and transitional character of the hemody-
namics is obtained by solving directly the incompressible Navier–
Stokes equations using a staggered finite–difference method em-
bedding various immersed boundary (IB) techniques to handle
complex moving and deforming geometries. The structural me-
chanics is based on the interaction potential method [3,4] to ac-
count for the mechanical properties of the biological tissues, which
are anisotropic and nonlinear. The electrophysiology, responsible
for the activation potential propagation through the cardiac tissue
triggering the active muscular tension, is incorporated by a bido-
main model [5] coupled with tenTusscher–Panfilov cell model [6].
All these models are fully coupled with each other for the result-
ing computational framework to provide realistic cardiovascular
simulations both in terms of muscular activation, intraventricular
hemodynamics and wall shear stresses. The three-way FSEI makes
the computational model predictive, thus opening the way to nu-
merical experiments for virtually testing new prosthetic devices
and surgical procedures.

This technological breakthrough, however, is limited by the
high computational cost of the multiphysics model where the
fluid, structure, and electrophysiology solvers are strongly inter-
connected, and they should be solved simultaneously in time. On
the other hand, the time advancement is achieved by discrete time
steps whose size is physically limited by the fastest dynamics (the
elastic frequency of the stiff ventricle myocardium) and a tiny time

step (in the order of 1 µs) is needed to ensure numerical stability.
Such a restriction implies that about half of a million time steps
are needed to advance a single heart beat and the computational
model has to be highly optimized to resolve a heart beat within
few hours in order to timely provide statistically converged results
for clinical decision. Efficient code parallelization and effective use
of the computational resources are thus essential for clinical appli-
cation where accurate and timely simulation results are needed.

Driven by the above motivations, the FSEI code for cardiac sim-
ulations [1] has been ported to GPU architectures as described
in this paper. The latest GPU technology is indeed well-suited to
address those problems, which can be executed on many multi–
threaded processors even in double–precision calculations. Fur-
thermore, the high memory bandwidth of recent GPU cards copes
well with those algorithms where large arrays need to be stored
and modified at any time step. As will be detailed in later sec-
tions, our numerical methodology relies on performing calcula-
tions on both structured exahedral grids and unstructured trian-
gulated mesh networks. While pure CPU parallelization has been
useful in scaling up such calculations, employing GPU architec-
tures have the potential to provide unprecedented speed-ups with
minimal changes to the underlying numerical algorithm and the
corresponding code. The porting relies on CUDA Fortran [7] that
extends Fortran by allowing the programmer to define Fortran
functions, called kernels, and on the CUF kernel directives that
automatically run single and nested loops on the GPU card with-
out modifying the original CPU code nor needing a dedicated GPU
subroutine. Owing to the enhanced strong scaling properties, the
GPU–accelerated FSEI algorithm can now tackle complex cardiac
simulations, including the solution of the incompressible Navier–
Stokes equations for the hemodynamics – which is the most de-
manding solver in terms of computational load – in a shorter time,
thus strongly reducing the time–to–solution to support medical
decision.

The paper is organized as follows. In Section 2, the FSEI physical
models and solution procedures are reviewed, and in Section 3, the
GPU implementation is detailed before discussing the performance
of the accelerated code in Section 4. In Section 5, we conclude the
paper with a presentation of a cardiac simulation of the left human
heart. The main conclusions and perspectives for future develop-
ments are in given in Section 6.

2. The fluid–structure–electrophysiology interaction (FSEI)

In this section, the fluid, the structural, and the electrophysi-
ology solvers along with their coupling strategy are briefly intro-
duced. A typical cardiac geometry is shown in Fig. 1(a), where the

2

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

myocardium of the left heart chambers is discretized using an un-
structured tetrahedral mesh in the form of a VTK or Gmsh file
containing the information about the spatial positions of the ver-
tices of the tetrahedral cells. On the other hand, the geometry of
slender structures such as the valve leaflets and the arteries is pro-
vided as a triangulated surface using the GTS (GNU Triangulated
Surface) format listing the node positions, the index of the nodes
connected by an edge and the index of the edges belonging to the
same triangular face.

As sketched the diagram of Fig. 1(b), the contraction and relax-
ation of the heart chambers along with the aorta and valve leaflets
kinematics results from the dynamic balance between inertia, ex-
ternal Fext

n , passive Fint
n , and active Fact

n forces acting on each mesh
node. The Newton’s second law of motion yields

mn
d2xn

dt2 = Fext
n + Fint

n + Fact
n , (1)

where xn is the (instantaneous) node position and mn its mass
(see Section 2.2). The hydrodynamic force is non–zero only on the
mesh nodes placed on the wet surfaces (e.g. the endocardium in
the heart chambers, the inner wall of the aorta, and the valve
leaflets), whereas the active tension can be non–zero only for the
nodes belonging to the muscular myocardium, i.e. ventricles and
atria.

In principle, all the forces at the right–hand–side of Equa-
tion (1) should be calculated simultaneously since they are all
function of the unknown instantaneous geometry of the tissues
and vice–versa, thus calling for an iterative approach. We have
implemented both strong and loose coupling procedures in the
code. The first is based on a predictor–corrector two–step Adams–
Bashforth scheme and the three solvers are iterated (typically 2–3
times) until the maximum relative error of the nodes position and
velocity drops below a prescribed threshold (equal to 10−7 for
nondimensional quantities). Conversely, in the loose coupling, the
blood flow and the electrophysiology are solved first and the gen-
erated hydrodynamic and active loads are used to evolve the struc-
ture according to Equation (1). Dedicated numerical tests showed
that, since the time step size is constrained by the elastic stiff-
ness of the myocardium, the loose coupling approach is seen to
be stable and yields an overall lower computational cost with re-
spect to the strong coupling, while retaining the same accuracy
and precision. We refer to [8,1,9] for a comprehensive discussion
and numerical tests.

In the following sections we briefly review the fluid, structural
and electrophysiology solvers providing the forces governing the
heart tissues kinematics, namely Fext

n , Fint
n , and Fact

n .

2.1. Fluid and pressure solver

The hematic velocity u and pressure p are governed by the
incompressible Navier–Stokes and continuity equations which in
non–dimensional form read:

∂u
∂t

+ ∇ · (uu) = −∇p + ∇ · τ + f,

∇ · u = 0,

(2)

with τ the viscous stress tensor, which depends on the strain
rate tensor E = 0.5(∇u + ∇T u) according to the Carreau–Yasuda
blood model (shear–thinning) as detailed in [10,11]. In the case of
hematic flows in the heart chambers and/or main vessels, how-
ever, the blood can be modeled as a Newtonian fluid (by changing
a flag in the code) with the linear constitutive relation τ = 2Re−1 E
as the non–Newtonian fluid features manifest only in vessels of
sub–millimeter diameter.

The governing equations (2) are solved over Cartesian meshes
using the AFiD solver, based on central second–order finite–
differences discretized on a staggered mesh [12–14], and the
no–slip condition on the wet heart tissues is imposed using an
IB technique based on the moving least square (MLS) approach
[15–17]. The first of equations (2) is discretized in time using
an explicit Adams–Bashforth method for the nonlinear convec-
tive term and an implicit Crank-Nicolson method for the viscous
terms:

un+1 − un

#t
+ [γ ∇ · (uu)n + ρ∇ · (uu)n−1]

= −∇pn+1 + 1
2Re

∇2(un+1 + un) + f, (3)

with the superscripts n and n + 1 indicating the velocity and
pressure fields at time tn and tn+1 = tn + #t , with #t the time
step. In incompressible flows, the instantaneous pressure field
pn+1 does not have a dynamic role, but it acts only as a La-
grangian multiplier assuring the solenoidal condition for the ve-
locity field un+1 imposed by mass conservation. For this reason,
only the updated pressure field pn+1 is used in (3), rather than
a time average between the time levels n and n + 1. The nu-
merical coefficients γ and ρ appearing in Equation (3) depend
on the temporal integration schemes of the convective terms and
are equal to 3/2 and −1/2, respectively, for the Adams–Bashforth
scheme (although not reported here for the sake of conciseness,
a third order Runge–Kutta scheme is also implemented in the
code). Since is not possible to solve simultaneously Equation (3)
for un+1 and pn+1, a fractional–step method [18,13] is used and
the no-slip boundary condition is then imposed on some La-
grangian markers uniformly distributed on the immersed bound-
ary domain and then transferred to several Eulerian grid-points
as shown in Fig. 2. A three–dimensional support domain consist-
ing of Ne = n × n × n Eulerian nodes (n = 3 is typically used)
is created around each Lagrangian marker, and the fluid veloc-
ity at the body position un(xb) is computed interpolating the
velocity of the Ne Eulerian grid-points in the support domain
as

ui(xb) =
Ne∑

k=1

φk
i (xb)ui(xk), (4)

where the φk
i (x) are the transfer operators which depend on the

shape functions used for the interpolation. In this paper, a lin-
ear basis function is used, pT (x) = [1, x, y, z], with an exponential
weight function centered at the location of the Lagrangian marker
[17]. The interpolated velocity (4) is used to compute the IB force
at the exact location of the marker which is then transferred back
to the Eulerian grid-points as a distributed forcing. This proce-
dure is applied to all Lagrangian markers for the three velocity
components, and the resulting IB forcing is applied to update the
intermediate velocity.

In order to provide the hydrodynamic loads as input to the
structural solver for fluid–structure coupling, the pressure and the
viscous stresses are evaluated at the Lagrangian markers laying on
the immersed body surface. In the case of the valve leaflets, both
sides of the tissues are wet by the hematic flow and the local hy-
drodynamic force at the wet triangular face Fext

f is computed along
both the positive n+ and negative n− = −n+ normal directions:

Fext
f = [−(p+

f − p−
f)n+

f + (τ+
f

− τ−
f
) · n+

f]A f , (5)

3

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

Fig. 2. IB treatment of the deformable tissues. (a) Generic wet surface, (b) triangulated mesh with the mass concentrated at the nodes and the Lagrangian markers placed at
its centroids, (c) support domain around a Lagrangian marker consisting of 27 Eulerian cells.

Fig. 3. (a) Sketch of the left cardiac configuration. The 3D myocardium is discretized using a tetrahedral mesh, while the 2D valve leaflets and arteries are discretized using
triangular elements. A nonlinear spring is placed at each mesh edge (b) with a hyperelastic and anisotropic constitutive relation depending on the spring orientation with
respect to the local fiber direction, φ. In the case of 2D structures their bending stiffness is obtained by placing some out-of-plane springs connecting the centroids of two
adjacent triangular faces, see first inset in (a).

where A f is the area of the triangular face. On the other hand,
for single–side wet surfaces, like the ventricle, aorta and atrium,
hydrodynamic loads are only computed over the inner surface.

Fext
f = [−p f n f + τ

f
· n f]A f , (6)

where n f is the normal vector pointing towards the hematic flow
wetting the surface. The hydrodynamic loads evaluated at the faces
of the triangulated wet surfaces are then transferred to the corre-
sponding triangle nodes as follows

Fext
n = 1

3

Nnf∑

i=1

Fext
f i A f i, (7)

where Nnf is the number of faces sharing the node n, Fext
f i and A f i

are the hydrodynamics force and surface of the i–th face sharing
the node n.

2.2. Structural mechanics

The dynamics of the deformable heart tissues is solved using
a spring–network structural model based on an interaction poten-
tial approach [3,4,17]. A three–dimensional (3D) solver is used for
the ventricular and atrial myocardium, whereas a two–dimensional
(2D) one is adopted for thin membranes as the valve leaflets and
the aorta.

The 3D structural model is built considering a tetrahedral dis-
cretization of the ventricular and atrial myocardium (same grid
used by the electrophysiology solver) and placing a spring on each
edge of the network, which yields a 3D force field as a response
to stretching as shown in the lower inset of Fig. 3(a). On the other
hand, the 2D structural model for the cardiac valve leaflets and
vessels is based on surface triangular meshes as indicated in the
upper inset of the same panel. Although the 3D and 2D spring
models were proposed in the framework of linear elastic materi-
als [19], they have been extended to the case of hyperelastic and
anisotropic materials so to correctly model the biological cardiac
tissues, in a similar fashion to the method proposed by [4,17,1] for
2D shells. At any point of the myocardium, the elastic stiffness is,
indeed, larger in the fiber direction, ê f than in the sheet ês and
sheet–normal ên directions (anisotropic behavior) and increases
nonlinearly with the strain (hyperelastic behavior). According to a
Fung–type constitutive relation, the strain energy density reads:

We = c
2
(eQ − 1), (8)

with Q = α f ε
2
ff + αsε2

ss + αnε2
nn being a combination of the Green

strain tensor components [4] in the fiber, εff , sheet, εss , and sheet–
normal εnn directions. The general expression for Q [4,17], which
includes also the cross terms of the Green strain tensor, has
been simplified under the assumption of pure axial loading and,
consequently, the non–null second Piola–Kirchhoff stress tensor

4

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

components in the three direction read τff = cαff eαff ε
2
ff εff , τss =

cαsseαssε2
ssεss and τnn = cαnneαnnε2

nnεnn . The latter two terms can
be taken as equal since it is found experimentally that αnn = αss

[20,21], meaning that the local axial stress of the mesh springs
only depends on their inclinations, φ, with respect to the local
fiber direction. Hence, the local stress within an edge inclined by
φ with respect to the local fiber direction is computed as

τφ = cαφeαφε2
φ εφ, (9)

where αφ =
√

α2
ff cos2 φ + α2

nn sin2 φ (we recall, assuming αnn =
αss), and the strain εφ is calculated as the spring elongation rel-
ative to its instantaneous length, i.e. εφ = (l − l0)/l, being l and
l0, the actual and the stress–free length of the edge, respectively.
As indicated in Fig. 3(b), the stress depends linearly on the strain
for small strain values and grows exponentially for larger ones,
on the other hand the stiffness is inversely correlated with the
angle φ. The corresponding force in 3D tissues applied to the
nodes n1 and n2 sharing the edge ln1,n2 thus reads:

Fint3D
n1

= τφ︸︷︷︸
stress

Nn1,n2∑

j=1

V cj

ln1,n2

︸ ︷︷ ︸
tissue cross–section

xn1 − xn2

ln1,n2︸ ︷︷ ︸
force direction

, Fel
n1

= −Fel
n2

,
(10)

with xn1 (xn2) the position of the node n1 (n2) and V cj the area
of the j − th tetrahedron out of the Nn1,n2 ones sharing the edge
ln1,n2 .

On the other hand, the nonlinear elastic force in 2D tissues ap-
plied to a couple of adjacent nodes sharing an edge reads

Fel2D
n1

= τφ︸︷︷︸
stress

s
A(1)

n1,n2 + A(2)
n1,n2

ln1,n2︸ ︷︷ ︸
tissue cross–section

xn1 − xn2

ln1,n2︸ ︷︷ ︸
force direction

, Fel
n2

= −Fel
n1

,
(11)

with xn1 (xn2) the position of the node n1 (n2) and A(1,2)
n1,n2 is the

area of the two triangles sharing the edge ln1,n2 . The parameters
of the Fung constitutive relation can be set so as to reproduce the
stress-strain curves in the fiber and cross-fiber direction measured
in the ex-vivo experiments [1,9].

Since in the 2D spring–network the axial loading (11) only
accounts for the in-plane stiffness, an additional bending energy
term has to be included so that to provide the out-of plane bend-
ing stiffness to the shells. The out–of–plane deformation of two
adjacent triangles sharing an edge is then associated with an elas-
tic energy due to the contraction/expansion of a bending spring,
whose energy involves four adjacent nodes as shown in the right
inset of Fig. 3(a). Considering two adjacent triangular faces sharing
an edge that are inclined of an angle θ , the discretized bending
energy is equal to [22]:

Wb = kb[1 − cos(θ − θ0)], (12)

where θ0 is the initial inclination of the stress–free configura-
tion. The bending constant is equal to kb = 2B/

√
3 [23,17], with

B = cαφs3/[12(1 −ν2
m)] the bending modulus of a planar structure,

where s is the tissue thickness, cαφ is the equivalent Young modu-
lus in the limit of small strain (that depend on the Fung properties
of the tissues) and νm = 0.5 is the Poisson ratio of the mate-
rial. The corresponding bending nodal forces, Fbe2D

n can be then
obtained by taking the gradient of the bending potential (12) as
detailed in [17] and the passive internal forces of shell structures
at a given node thus read Fint2D

n = Fel2D
n + Fbe2D

n .
In the 3D (2D) structural models, the mass of the tissue is con-

centrated on the mesh nodes proportionally to the volume of the

tetrahedrons (area of the triangles) sharing a given node. In the
case of a 3D (2D) tissue of local density ρcj (ρ f j) the mass of the
j–th cell (face) with volume V cj (surface A f j) is equally distributed
among its four (three) nodes and the mass of a node, mn , reads

m3D
n = 1

4

Nnc∑

j=1

ρcj V cj,



m2D
n = 1

3

Nnf∑

j=1

ρ f j s f j A f j



 , (13)

being the summation extended only to the Nnc tetrahedrons (Nnf
triangles) sharing the selected node n and s f j the local thickness
of the deformable shell.

2.3. Electrophysiology

The electrical activation of the myocardium is governed by the
bidomain model, called in this way because of the conductive me-
dia modeled as an intracellular and an extracellular overlapping
continuum domains separated by the myocytes membrane [5,24].
The potential difference across the membrane of the myocytes, the
transmembrane potential v and the extracellular potential vext sat-
isfy:

χ

(
Cm

∂v
∂t

+ Is + Iion(η)

)
= ∇ · (Mint∇v) + ∇ · (Mint∇vext),

0 = ∇ · (Mint∇v+(Mint+Mext)∇vext),

∂η

∂t
= F (η, v, t)

(14)

where χ is the surface–to–volume ratio of cells, Cm is the mem-
brane capacitance, Is is the external input current initiating the
electrical propagation and Iion is the ionic current per unit cell
membrane (measured in mA/mm2) defined by the cell model (in-
dicated by F) consisting of a system of nonlinear ordinary differ-
ential equations with state vector η. The quantities Mint and Mext

are the conductivity tensors of the intracellular and extracellular
media, which reflect the orthotropic myocardium electrical prop-
erties and depend on the local fiber orientation, with the electrical
signal propagating faster along the muscle fiber than in the cross–
fibers directions. The conductivity tensor in the global coordinate
system are thus obtained by the transformations Mext = AM̂

extAT

and Mint = AM̂
intAT , where A is the rotation matrix contain-

ing column–wise the components of fiber, sheet and sheet–normal
unit vectors and M̂

ext
, M̂

int
are diagonal tensors expressed in the

principal basis formed by the fiber, sheet and sheet–normal direc-
tions, where its non–null diagonal components are the principal
electrical conductivities [25].

The set of equations (14) are discretized on the same tetra-
hedral mesh used for the three–dimensional structural solver by
using an in–house finite volume (FV) library, which provides a
suitable approach for solving the electrophysiology equation in
complex geometries [9]. The FV method is cell–based [26] mean-
ing that the unknown fields are defined at the center of each cell
and, using the divergence theorem, the bidomain equations (14)
can be written in conservative form on each tetrahedron, ,i . Fur-
thermore, assuming all quantities to be uniform on the faces of
the tetrahedrons (as typically done in FV) and adopting an explicit
time scheme, the first equation of the system (14) can be solved
over each tetrahedron:

Cm
vn+1

i − vn
i

#t
= γ

χ V n
,i

4∑

j=1

An
∂,i, j

[Mint
i

(∇vn
i + ∇vn

ext i)] j · n j

5

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

+ ρ

χ V n−1
,i

4∑

j=1

An−1
∂,i, j

[Mint
i

(∇vn−1
i + ∇vn−1

ext i))] j · n j

−γ (In
ion,i + In

s,i) − ρ(In−1
ion,i + In−1

s,i), (15)

where vn−1
i , vn

i and vn+1
i are the transmembrane potentials de-

fined at the i-th cell (having a volume of V,i) at the time tn−1 =
tn −#t , tn and tn+1 = tn +#t , respectively. The gradients ∇vn

i and
∇vn−1

i (as well as ∇vn
ext i and ∇vn−1

ext i) are defined at the face cell
and are obtained by interpolating the gradients at the two cells
sharing the face, which have been obtained using the Gauss-Green
formula

∇vc = 1
V c

4∑

j=1

v f j S f jn f j, (16)

where the subscripts c and f indicate quantities evaluated at the
mesh cells and faces, and the summation index j loops over the
four faces of the tetrahedral cell having surfaces A∂,i . Once vn+1

is solved through equation (15), the external potential at time tn+1,
vn+1

ext i , is obtained by solving the linear system given by the sec-
ond equation of the system (14) using an iterative GMRES method
with restart [27]. It should be noted that in the case the external
and the internal conductivity tensors are proportional, the second
equation of the system (14) can be inserted in the first one, thus
obtaining a single governing equation for the transmembrane po-
tential v (monodomain model), which is computationally cheaper
than the bidomain counterpart since the aforementioned linear
system should not be solved [25]. Unless pathological pacing or de-
fibrillation are present in the cardiac simulation, the monodomain
equation can be conveniently used to approximate the bidomain
solution also in the case the conductivity tensors are not propor-
tional by setting the components of the monodomain conductivity
tensor to half the harmonic mean of the corresponding extracel-
lular and intracellular components [28]. The time–scheme coeffi-
cients in equation (15) are respectively equal to γ = 1, ρ = 0 for
first–order backward Euler method and to γ = 3/2, ρ = −1/2 for
second–order Adam-Bashfort methods. Hence, at each time step
the updated transmembrane potential vn+1 is obtained as a func-
tion of v , vext , Iion,i and Is,i evaluated at tn and tn−1. The updated
state vector of the cell model ηn+1 determining the updated ionic
current In+1

ion is computed solving a system of 19 coupled nonlin-
ear ODEs of the tenTusscher–Panfilov model on each tetrahedron,
which are indicated in compact form by the last equation of the
system (14). These equations are known to be stiff, and explicit
time schemes generally require prohibitively small time steps to
be numerically stable. In contrast, implicit schemes are more sta-
ble but also computationally expensive. This impasse is promptly
solved by using the Rush–Larsen method [29,30] where the quasi-
linear (gating) variables are solved analytically within a time step
if the transmembrane potential v is held constant and an explicit
method is used to integrate the remaining nonlinear ones.

The active muscular tension at each grid node Fact
n is then ob-

tained as a function of the transmembrane potential v through the
model equation proposed by Nash and Panfilov [31].

3. Code parallelization and GPU acceleration

In this section, the FSEI parallelization and its GPU accelera-
tion is described. The GPU porting is based on CUDA Fortran [7] as
the CPU code was originally written in Fortran90, and the result-
ing CUDA version keeps the structure of the original CPU Fortran
although it allows portions of the computation to be off-loaded
to the GPUs. In CUDA, the code instructions running on the GPU
cards are programmed in the kernel which is a subroutine launched

with a grid of threads grouped into thread blocks. Each thread
block runs independently from the others on an available multi-
processor of the GPU, and the thread block data can be shared
among threads belonging to the same block. Importantly, the GPU–
accelerated FSEI code not only uses dedicated GPU subroutines but
it also makes extensive use of the CUF kernels, which are partic-
ularly convenient for porting to GPU single and nested do–loops
without modifying its content and simply calling the CUDA direc-
tive. The latter appears as a comment to the compiler if GPU code
generation is disabled (similar to the OpenMP directives that are
ignored if OpenMP is not enabled). Therefore, when possible, CUF
directives allow for a very efficient and easy to implement GPU
parallelization [32]. CUDA–enabled GPUs thus provide thousands
of processor cores which allow to run tens of thousands of threads
concurrently resulting in an effective speed–up of algebraic opera-
tions over large computational grids as is the present case.

In the final version of the code the whole fluid, structural
and electrophysiology computations are performed on the GPUs,
whereas the CPUs are only used to stage the data needed dur-
ing the communication phases and for I/O through parallel HDF5
providing a standard format to store and manage raw data. Never-
theless, when the GPU code is compiled omitting the CUDA flags
the original CPU code is retrieved.

3.1. Fluid and pressure solver

The parallelization of the Navier–Stokes solver introduced in
section 2.1 is based on a domain decomposition where the Carte-
sian domain is split into slabs [33,34]. According to this ‘one-
dimensional slab’ parallelization, each processor needs to store in-
formation from the neighboring processors which is required for
computing the derivatives in what is called a ‘halo/ghost’ layer and
since the flow solver employs a second-order finite difference spa-
tial discretization at most one halo layer is required on each side
of a slab. The viscous terms are treated implicitly yielding the solu-
tion of a large sparse matrix, which is avoided by an approximate
factorization yielding tridiagonal matrices (one for each direction
[13]) inverted using Thomas’ algorithm with a Sherman–Morrison
perturbation in the two periodic dimensions.

3.2. IB-MLS

The parallelization of the IB method is carried out as in [33,34].
The wet surfaces of the cardiac valve leaflets, arteries and the
endocardium are organized as a whole wet surface whose informa-
tion (nodes, edges and triangles) is stored in all the processors, al-
though the computations required for each Lagrangian node/struc-
ture is performed only by the specific processor, depending on the
task that needs to be performed (task–based parallelism).

First, all processors determine the three indices of the Eule-
rian mesh cell containing each marker (centroid) of the Lagrangian
mesh, compute the geometrical properties of the triangular face
(e.g. area and normal vector) and store this information into global
arrays so that it is available to every processor. The IB forcing f
applied at the fractional step is then computed by interpolating
the flow velocity on the centroids of the Lagrangian mesh using
a MLS method (4) and each processor performs all the opera-
tions required on its respective slabs, hence, the MLS interpolation
along with determining the IBM force is performed only on the La-
grangian markers residing within the processors slab regardless of
which immersed body it belongs to.

A similar parallelization strategy is used to compute the ex-
ternal forces Fext

f on the triangular faces of the wet surfaces (see
equations (5) and (6)), which are then transferred to the wet nodes
according to equation (7) and the resulting Fext

n are then commu-
nicated over all processes using MPI_ALLREDUCE. Both the calcu-

6

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

lation of the IB forcing f and the external forces Fext
n have been

accelerated by coding dedicated GPU subroutines that are exe-
cuted in place of the original CPU subroutines when the code is
compiled with the -DUSE_CUDA flag. Although we use CUF ker-
nel extensively, these subroutines are coded manually on the GPU
since the 4x4 system of equations that has to be solved for each
Lagrangian marker to compute the φk

i (xb) weights is better han-
dled using multiple threads (namely 16) concurrently.

3.3. Structural solver

Through the simulation the instantaneous configuration xn of
both the 3D and the 2D structures are organized as a whole body:
one for the three-dimensional myocardium of the heart cham-
bers and another comprising the two–dimensional structures such
as the cardiac valve leaflets and the arteries. The GPU accelera-
tion of the internal stresses computation corresponding to equa-
tions (11) and (10) in section 2.2 is achieved by using the CUF
kernel directives that are very simple to use as the original Fortran
code is basically unaltered and the GPU acceleration is obtained by
computing all the internal forces at the mesh nodes Fn simulta-
neously. On the other hand, the bending forces used for 2D shells
only, see equation (12), are computed using a dedicated GPU sub-
routine since multiple threads may write concurrently on the same
array element and the build–in function ATOMICADD has to be
used. In a similar fashion to the subroutine for the IB forcing, the
GPU subroutine are only executed when the CUDA flag is active,
the corresponding CPU routine is executed otherwise. Note that
both the internal and the active (see next section) forces do not
depend on the velocity field defined on the Eulerian mesh and,
therefore, the computing load is distributed evenly across all pro-
cessors.

3.4. Electrophysiology solver

Owing to the combination of the finite volume formulation that
has a diagonal mass matrix and an explicit temporal scheme, the
equation for the transmembrane potential v is marched in time
and the resulting algebraic problem can be efficiently accelerated
through few CUF kernels. Specifically, the electrophysiology solver
results in a sequence of loops on the mesh cells and on the mesh
faces, which are GPU accelerated simply wrapping the original CPU
code with CUF kernel directives. As an example, at each time step,
the gradient of the transmembrane potential can be evaluated in
parallel by using the Gauss–Green formula (16) simultaneously on
the mesh cells. Moreover, the interpolation needed to evaluate the
transmembrane potential at the tetrahedral nodes and faces and
the gradient at the mesh faces as well as the GMRES algorithm are
also parallelized with the same simple approach.

The cell model reproducing the fluxes through the ionic chan-
nels and coupled to the bidomain/monodomain equations as in
equation (14), calls for the solution of a system of nonlinear ODEs
at each mesh cell at any time step. As the ODEs depend, by defi-
nition, only on the transmembrane potential at the previous time
steps rather than on its field variations, the 19 ODEs of the ten-
Tusscher Panfilov model over each cell are time marched concur-
rently by the GPU threads invoked by the CUF kernels.

The total force acting on each mesh node is computed as the
summation of the external forces (pressure plus viscous), the inter-
nal forces arising from the elastic potentials and the active forces.
The Newton equation (1) at each cell node is also solved using a
CUF kernel directive.

4. Code performance

In order to test the computational efficiency of the GPU accel-
erated FSEI, we have run the code on Marconi100 the GPU ac-

celerated cluster from CINECA equipped with V100 cards and on
the novel DGX machine from Nvidia mounting the next genera-
tion A100 cards. Rather than running on multiple nodes, the code
performance has been tested on a single node since such a lim-
ited computational hardware can be, in principle, hosted also in a
hospital. For this analysis, we have initialized a left cardiac geom-
etry as the one detailed in Section 5 using 40000 tetrahedrons for
the 3D myocardium and 18000 triangles for the 2D wet surfaces.
However, as the Eulerian grid is refined, the Lagrangian resolution
should be refined accordingly in order to ensure the correct en-
forcement of the no-slip boundary condition using the IB method,
and consequently, the number of tetrahedrons and triangles should
be a function of the Eulerian grid at use. Such a constraint not
only requires to remesh the whole cardiac geometry any time the
grid of the fluid solver is refined, but it would also affect the scal-
ing tests of the code as any Eulerian grid would correspond to a
different Lagrangian one. This issue can be avoided by using an
adaptive Lagrangian mesh refinement procedure where the trian-
gular mesh is automatically subdivided into smaller subtriangles
(called tiles) until each one gets smaller than the local Eulerian
grid size, thus avoiding ‘holes’ in the interfacial boundary condi-
tion. This way, the heart tissues can be discretized by adequately
resolving the geometric details, but independently of the Eulerian
mesh, and each triangle is successively refined until the Lagrangian
resolution of the tiled grid is sufficiently high; we refer to [1,9] for
a more comprehensive discussion of the method. As a result, the
same tetrahedral and triangular meshes are used for all the scaling
tests presented here and, as the Eulerian grid is refined, only the
number of tiles where the no–slip condition is enforced increases,
whereas the mesh used to solve the structural dynamics and the
electrophysiology (here based on the monodomain equations) is
unvaried.

Fig. 4(a) shows the wall–clock time per time step as a function
of the number of GPUs, with the number of grid points increas-
ing proportionally to the number of computing cards starting from
an initial grid of 287x287x467 corresponding to about 70% of the
available memory of a single V100 (16 GB). As the number of
cards is increased from one to two, the computational time re-
mains about the same with a wall–clock time of about 0.2 s per
time step, thus showing a good weak scaling properties, although
when the number of GPU cards and grid points are further dou-
bled the computing time increases significantly. This worsening
of the performance can be rationalized by recalling the architec-
ture of the Marconi100 where each node is equipped with two
pairs of GPUs and each pair mounted on the CPU sockets. Con-
sequently, the cards within the same pair are connected by the
fast NVLink 2.0 connection allowing for an efficient all–to–all com-
munication among the slabs, whereas the two pairs of cards are
connected by a slower 64 GBps X bus. The latter connection sig-
nificantly reduces the speed of the all–to–all communications be-
tween the pairs of cards that is needed to solve both the equation
for the provisional velocity and for the elliptic equation to im-
pose mass conservation (see Section 2.1), which become a bottle-
neck compromising the code scalability. For this reason, the same
weak scaling test has been run on the novel Nvidia DGX machine
equipped with 8 GPUs A100 all connected through the next gener-
ation NVLink 3.0 for a total GPU memory of 640 GB. As indicated
by the red line in Fig. 4(a), not only the computational time is
reduced owing to the faster GPU cards, but also the weak scal-
ing works satisfactory and the grid is increased from one to eight
cards preserving a wall–clock time of about 0.1 s per time step.

In contrast to many turbulent flows where the Reynolds num-
ber in the simulation is limited by the computational resources
available and by the weak scaling performance of the code, in
cardiovascular flows it is pointless to increase the Reynolds num-
ber above the one fixed by the human physiology in healthy and

7

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

Fig. 4. (a) Weak and b) strong scaling performance of the GPU accelerated code running on one node of Marconi100 (blue dashed curves) equipped with V100 cards and on
a DGX machine (red solid curves) mounting A100 cards. The grid points NxxN y xNz are reported for the two periodic direction – x and y – and for the wall–normal one, z.
The time to integrate a whole heartbeat is obtained by scaling the wall–clock time of a time step by the number of timesteps (taken equal to half of a million) needed to
integrate 1 second, which corresponds to a heart rate of 60 beats–per–minute. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

pathologic conditions. In this framework, it is more relevant testing
the code speedup for a given (converged) grid as more compu-
tational resources become available (strong scaling), rather than
preserving the same computing time when both the grid refine-
ment and the number of GPUs are increased (weak scaling as
discussed above). In Fig. 4(b) the strong scaling results for different
grids running on Marconi100 (blue lines) and on the DGX machine
(red lines) are shown. The smallest grid running on Marconi 100
(257x257x343 grid points in the three directions) corresponds to
the one used for the production simulations used in the next sec-
tion. Specifically, when the number of cards is doubled from one
to two the wall–clock time reduces from 0.115 to 0.072 s cor-
responding to a speedup of about 1.60, whereas doubling again
from two to four cards it reduces to 1.34 owing to the slower
communications among the GPU couples connected through the
X bus, as explained above for the weak scaling. A similar behavior
is observed for the second grid considered, 312x321x521, corre-
sponding to the allocation of about 90% of the available memory
of a single V100 GPU card on Marconi100. The same grid has been
tested on the DGX machine yielding a significantly lower wall–
clock time, namely about −67% using 1 or 2 cards and −74%
using 4 cards, owing to the new A100 GPU cards and the faster
connection among cards, NVLink 3.0 among all the cards rather
than NVLink 2.0 plus Xbus connection between the couples as on
Marconi100. Although the size of the grid limits the code speedup
ranging from 1.7 (one card to two cards) to 1.4 (four cards to eight
cards), it should be noted that the wall–clock time using 8 A100
cards allows to solve a whole heartbeat for the left heart in about 3
hours, thus greatly reducing the time–to–solution needed to timely
provide computational results to the medical doctor to aid clinical
decisions. Nevertheless, a speedup exceeding 1.8 is observed for
more refined grids such as 455 × 455 × 741 and 531 × 531 × 751,

which correspond to 8.5 and 10 hours to integrate a single heart-
beat.

Remarkably, the more refined 531 × 531 × 751 grid correspond-
ing to a memory allocation above 95% on four V100 cards (with
a total available memory of 16Gb×4=64Gb) can be allocated on a
single A100 card providing a wall–clock time per time step similar
to the one measured using four V100 cards (0.42 s and 0.43 s, re-
spectively). The time to solution is then reduced by a factor −46%,
−71% and −83%, as the number of A100 cards is increased to 2, 4
and 8, respectively.

It should be remarked that especially on these finer grids suit-
able for the whole heart modeling, the GPU accelerated code
results in a significantly better computational performance with
respect to the original CPU code (accelerated through MPI and
openMP) and in a substantial reduction of the time–to–solution
thus recalling that the first heartbeat is typically disregarded in
order to avoid transient effects perturbing the phase averaged
statistics which are computed using the subsequent five to ten
heartbeats. Please see Appendix A for the scaling tests of the CPU
version of the code.

5. Application: the left human heart

As a demonstration of the GPU accelerated FSEI, we show some
results for the left heart of a healthy subject. The computational
domain is similar to the one used in [9] which relied on the CPU
version of the code: we refer to this reference for further details
on the geometrical and electrophysiology parameters of the car-
diac configuration. The computational domain is sketched in Fig. 3
and comprises a left atrium and ventricle that are discretized as
a whole elastic three–dimensional (3D) medium with attached a
set of slender bodies (hence modeled as 2D shells), namely the
bileaflet mitral valve, the three-leaflet aortic valve and the tho-

8

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

racic aorta. The 2D structures are bound to the 3D structure or
to another 2D structure so that to avoid that two connected heart
structures separate each other during the simulation: in particular,
the mitral valve leaflets and aorta are bound to the myocardium,
whereas the aortic valve leaflets are bound to the aorta. Since the
mass ratio among any two connected structures is large, the more
massive one (e.g. the 3D myocardium in the ventricle–aorta con-
nection) is defined as master whereas the lighter counterpart is
the slave and for each slave vertex to be bound, the closest mas-
ter vertex along with the corresponding vector distance between
them are determined and stored in the preprocessing. During the
simulation the instantaneous position of the binding slave vertices
is thus forced to be equal to the vectorial sum of the instantaneous
position of the corresponding master vertex plus the initial vector
distance found in the preprocessing.

The reference frame is defined with the z-axis oriented as the
longer ventricle axis and pointing down towards its apex, the x − z
plane is identified with the symmetry plane of the ventricle. The
left ventricle has a stress-free volume of 125 ml and is connected
to the aorta through the aortic orifice with a diameter da = 19 mm
where the three-leaflet aortic valve is placed. On the other hand,
the ventricle is connected to the atrium (with a free–stress vol-
ume of 40 ml) through a circular orifice of diameter dm = 24 mm
where the bileaflet mitral valve is mounted. The Reynolds num-
ber is defined using as reference length and velocity, the diameter
of the mitral orifice and the average speed through the mitral
annulus during diastole measured using Doppler echocardiogra-
phy (Um = 60 cm/s): Re = Umdm/ν = 3000, with ν the effective
kinematic viscosity for human blood with an hematocrit of 40%
(Newtonian blood model). The hemodynamics is thus solved in a
Cartesian domain of size lx × l y × lz = 96 × 96 × 156 mm3 with
periodic conditions in the x, y directions and no–slip Dirichlet con-
dition on the velocity in the z direction. The left heart is immersed
in the fluid domain without intersecting the boundaries of the
Eulerian grid and during its dynamics it can suck (propel) blood
through the inlets (outlet) of the pulmonary veins (aorta) from (to)
the outer blood volume, which serves as a numerical blood reser-
voir connected to the left heart at study. Since the left heart is
decoupled from the rest of the circulatory system, a localized vol-
ume forcing at the pulmonary veins inlet and aorta outlet directed
as the normal to the section towards the left heart is imposed
so as to mimic the hydraulic impedance of the vascular network
not included in the computational domain, see [9]. Nevertheless,
different hydraulic conditions can be enforced in the code by dy-
namically coupling the pressure at the inlets of veins/arteries with
1D lumped parameters network governed by a set of ODEs which
model the resistive, inertial and capacitive properties of the up-
stream/downstream vascular network [35]. Alternatively, the aorta
along with the superior and inferior vena cava could be closed–
loop connected through a 3D numerical Windkessel system made of
an elastic chamber solved through FSI and immersed in the same
Eulerian grid comprising the cardiac domain. Even if any phase of
the cycle could be used as initial condition, the beginning of the
systole is the most convenient as the cardiac valves are closed, the
heart chambers are in the stress-free configuration and only the
aorta needs a pretensioning load.

The myocardium is modeled as a uniform conductive medium
and the direction of the fast conductivity fibers has been accounted
for by setting the conductive tensor Mint and Mext so that the
computational model reproduces the benchmark timings of ven-
tricular and atrial depolarization. Since the sinoatrial node located
in the upper part of the right atrium is not included in the com-
putational domain, a localized triggering impulse, Is , is prescribed
with the appropriate delays at the Bachmann and His bundles,
respectively, for the left atrium and ventricle. These electrical im-
pulses trigger the muscle contraction and the time period between

two consecutive input currents at the bundles is set equal to
1000 ms, which corresponds to a heart beat of HR = 60 bpm and
a Womerseley number of Wo = dm/

√
60ν/HR = 10.96.

5.1. Electrical activation and muscle contraction

The electrical activation of the left atrium and ventricle is
shown in Fig. 5 by visualizing the isocontours of the transmem-
brane potential, where the base–level (green isolevel) indicate the
resting potential of about 90 mV. As visible in Fig. 5(a), the electri-
cal impulse applied at the Bachmann bundle induces a local depo-
larization of the myocardium, which exhibits a positive transmem-
brane potential of about 20 mV. This local depolarization fosters
the depolarization of the neighboring myocytes and the resulting
propagating wavefront travels across the atrial myocardium (panel
5b), and the whole chamber is electrically activated after about
90 ms (panel 5c), which corresponds to the P wave in the electro-
cardiogram (ECG). A similar behavior is observed for the ventricu-
lar activation corresponding to the so–called QRS–complex in the
ECG and lasting about 100 ms. The electrical impulse originated at
the His bundle (panel 5d) locally depolarizes the ventricular my-
ocardium (5e) then spreads around the atrioventricular node until
(5f) the whole ventricle is activated.

5.2. Cardiac hemodynamics

Fig. 6 shows the corresponding hematic flow in the symmetry
plane (x − z) driven by the muscular contraction, where the heart
phase is indicated within a typical ECG profile and the velocity
vectors are superimposed on the isocontours of the velocity mag-
nitude. At beginning systole (panel 6a), the ventricular pressure
increases, and an incipient regurgitation is observed through the
mitral channel before the blood is ejected into the aorta through
the aortic channel as depicted in (6b). During early diastole (6c),
the ventricle relaxes, and the hematic flow accelerates through
the mitral orifice thus opening the valve, and as a consequence,
a strong mitral jet is produced, which is initially directed towards
the ventricle lateral wall owing to the asymmetry of the leaflets.
This initial rapid filling of the ventricle owing to the elastic restor-
ing force is called the E–wave, and when peak blood flux into the
ventricle is attained (6d), the leaflets open wider, the jet points
vertically down to the ventricle apex and a single large vorticity
structure takes place occupying the whole ventricle in agreement
with diastolic measurements both in–vivo and in–vitro [36,37]. Af-
ter the initial passive filling has slowed down then (6e) diastasis
starts and the main vorticity structure decays before (6f) another
fluid injection called the A–wave is generated by the atrial systole
creating a second mitral jet, but weaker. At the end of the diastole,
the initial configuration is recovered and the cardiac cycle repeats
itself.

5.3. Wiggers diagram

The variations in pressure and volume described above can be
portrayed in the Wiggers diagram that is a standard represen-
tation of the heart physiology. In order to show the agreement
between the CPU– and the GPU–compiled codes, both curves are
shown in Fig. (7), where the pressure and volume of the heart
chambers have been phase–averaged over five heart beats. The
ventricular contraction triggered by the electrical discharge of the
myocardium (QRS in the ECG) causes the ventricular pressure to
increase, which exceeds the one in the thoracic aorta, thus open-
ing the semilunar valve squeezing the blood from the ventricle
into the aorta. After the ventricular volume gets to its minimum
(end–systolic–volume ESV), the ventricular muscle starts relaxing
producing a fall of the ventricular pressure and the semilunar valve

9

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

Fig. 5. Snapshots of the electrical activation of the left atrium, (left) front and (right) lateral view. The ECG profile indicates the phase within the heart beat.

closes. Simultaneously, diastole starts, and the ventricular filling
begins when the mitral valve opens and the volume of the for-
mer rapidly increases. Ventricular pressure remains low during this
filling, whereas the ventricular volume reaches the stress–free vol-
ume and further increases a little more when the atria contract
(end–diastolic–volume EDV). This contraction causes a small in-
crease in atrial and ventricular pressures (and is associated with
the P wave of the ECG). The corresponding stroke volume nor-
malized by the EDV expressed as a percentage provides the ejec-
tion fraction, E F = S V

E D V % = 81.0 ml
127.6 ml = 63.5%, which is a measure

of the efficiency of the heart functioning, with healthy values
for a normal subject in between 50% and 70%. In the case of a
heart beating at 60 bpm, as investigated here, the cardiac out-
put is equal to C O = S V × H R = 81.0 ml × 60 bpm = 4.86 l/min,
which is a typical physiological value for the heart of a healthy
adult.

6. Conclusions

The FSEI is a promising tool to provide a prediction on the pa-
tient hemodynamics. However, running the whole FSEI is computa-
tionally expensive as three solvers have to be used simultaneously
and the relatively high Reynolds number (about 3000 based on the
diameter of the mitral orifice and the peak intraventricular veloc-
ity) together with the stiffness of the myocardium introduce short
time scales, thus calling for fine grids and small time steps. Indeed,
about half of a million of time steps are needed to solve a single
heartbeat and, consequently, at least 5 millions time steps have to
be advanced to integrate 10 heartbeats and obtain phase–averaged
data. Clearly, these calculations can not be executed on a small
desktop computer and should be tackled using high–performance
computing facilities to reduce the time to solution. On the other

hand, such an approach would be of little use in the clinical prac-
tice as medical doctors would need to wait days for the results
coming from a remote computing facility before deciding about the
patient prognosis.

In this work, a GPU acceleration of the FSEI code has been de-
veloped with the aim of making the code as efficient as possible
to run using on premises computing resources composed of a few
GPUs cards while maintaining time to solution within hours. In-
deed, GPUs are a compact numerical engine optimized to execute
a large number of threads in parallel, which is a crucial point for
a systematic use of cardiovascular flow simulations in the clinical
practice. To this aim, the initial CPU code parallelized using MPI,
has been ported in CUDA Fortran with the extensive use of ker-
nel loop directives (CUF kernels) in order to have a source code
as close as possible to the original CPU version. The resulting GPU
accelerated multi–physics heart model shows good strong scaling
characteristics, and the wall-clock time per step for the GPU ver-
sion is in between one and two orders of magnitude smaller than
that of the CPU code thus allowing for a timely solution of the
intraventricular hemodynamics.

Our computational environment can simulate several patient
heartbeats overnight, thus timely providing the phase–averaged
results to the medical doctor and, importantly, the required hard-
ware can fit in an office or in a dedicated computing facility in
a clinic or in a hospital. The FSEI scaling performance has been
tested both using the V100 and the faster A100 GPU cards and
the speedup documented here on the DGX Nvidia machine will
be obtained with the upcoming pre-exascale supercomputers and
is expected to further improve with the next generation cards. The
GPU-accelerated FSEI introduced in this paper is thus a further step
towards the development of physical and CFD aided medical diag-
nostic to investigate pathologies and test surgical procedures.

10

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

Fig. 6. Instantaneous snapshots of the nondimensional velocity vectors in the x − z symmetry plane and contours of the velocity magnitude colored by the velocity magnitude
times the sign of the vertical velocity. The ECG profile indicates the phase within the heart beat.

Fig. 7. Wiggers diagram [38] obtained by the numerical simulation showing (a) the time evolution of the ventricular, atrial and aortic (thoracic tract) pressures, along with
(b) the ventricular, atrial, aortic (thoracic tract) volumes as a function of time normalized by the beating period, t/T . Black (red) lines correspond to GPU (CPU) simulations,
all quantities have been phase–averaged over five heart beats.

11

F. Viola, V. Spandan, V. Meschini et al. Computer Physics Communications 273 (2022) 108248

Fig. 8. Strong scaling performance of the CPU code for a grid of Nx = 513, N y =
513 and Nz = 721 nodes and another of Nx = 321, N y = 321 and Nz = 481, with
the fluid solver parallelized using MPI directives.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work has been partly supported with the 865 Grant
2017A889FP ‘Fluid dynamics of hearts at risk of failure: towards
methods for the prediction of disease progressions’ funded by the
Italian Ministry of Education and University.

Appendix A. Scaling of the CPU version of the code

As a final analysis, the CPU strong scaling is reported in Fig. 8
using a grid of 531 × 531 × 721 nodes running on Cartesius from
the Dutch Supercomputing Consortium SURFsara equipped with
2x12–core 2.6 GHz Intel Xeon E5-2690 v3 Haswell nodes with 64
GB of memory per node and 56 Gbit/s inter-node FDR InfiniBand.
The CPU code provides the same results as the GPU version up
to machine precision (see Fig. 7) with a reasonable strong scaling.
However, the wall–clock time per iteration across different reso-
lutions is high compared to the results achieved on GPU’s which
eliminates the capability to simulate multiple heart beats using
pure CPU parallelization in an economic manner.

References

[1] F. Viola, V. Meschini, R. Verzicco, Eur. J. Mech. B, Fluids 79 (2020) 212–232.

[2] D.L. Sackett, Evidence-Based Medicine, Seminars in Perinatology, vol. 21, Else-
vier, 1997, pp. 3–5.

[3] D.A. Fedosov, B. Caswell, G.E. Karniadakis, Comput. Methods Appl. Mech. Eng.
199 (29–32) (2010) 1937–1948.

[4] P.E. Hammer, M.S. Sacks, J. Pedro, R.D. Howe, Ann. Biomed. Eng. 39 (6) (2011)
1668–1679.

[5] L. Tung, A bi-domain model for describing ischemic myocardial dc potentials,
Ph.D. thesis, Massachusetts Institute of Technology, 1978.

[6] K. ten Tusscher, A. Panfilov, Phys. Med. Biol. 51 (23) (2006) 6141.
[7] G. Ruetsch, M. Fatica, CUDA Fortran for Scientists and Engineers: Best Practices

for Efficient CUDA Fortran Programming, Elsevier, 2013.
[8] V. Meschini, M. De Tullio, G. Querzoli, R. Verzicco, J. Fluid Mech. 834 (2018)

271–307.
[9] F. Viola, V. Meschini, R. Verzicco, under revision in: Topics in Biomechanics of

Cardiovascular Diseases, in: Springer Series in Solid and Structural Mechanics,
2022.

[10] D. Katritsis, L. Kaiktsis, A. Chaniotis, J. Pantos, E.P. Efstathopoulos, V. Mar-
marelis, Prog. Cardiovasc. Dis. 49 (5) (2007) 307–329.

[11] F. De Vita, M.D. de Tullio, R. Verzicco, Theor. Comput. Fluid Dyn. 30 (1) (2016)
129–138.

[12] M. Rai, P. Moin, in: 27th Aerospace Sciences Meeting, 1991, p. 369.
[13] R. Verzicco, P. Orlandi, J. Comput. Phys. 123 (2) (1996) 402–414.
[14] E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. Fluids 116

(2015) 10–16.
[15] M. Uhlmann, J. Comput. Phys. 209 (2) (2005) 448–476.
[16] M. Vanella, E. Balaras, J. Comput. Phys. 228 (18) (2009) 6617–6628.
[17] M.D. de Tullio, G. Pascazio, J. Comput. Phys. 325 (2016) 201–225.
[18] J. Kim, P. Moin, J. Comput. Phys. 59 (2) (1985) 308–323.
[19] A.V. Gelder, J. Graph. Tools 3 (2) (1998) 21–41.
[20] K.D. Costa, P.J. Hunter, J. Wayne, L. Waldman, J. Guccione, A.D. McCulloch, J.

Biomech. Eng. 118 (4) (1996) 464–472.
[21] T. Usyk, R. Mazhari, A. McCulloch, J. Elast. 61 (1–3) (2000) 143–164.
[22] Y. Kantor, D.R. Nelson, Phys. Rev. A 36 (8) (1987) 4020.
[23] J. Li, M. Dao, C. Lim, S. Suresh, Biophys. J. 88 (5) (2005) 3707–3719.
[24] R.H. Clayton, A.V. Panfilov, Prog. Biophys. Mol. Biol. 96 (1) (2008) 19–43.
[25] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing

the Electrical Activity in the Heart, vol. 1, Springer Science & Business Media,
2007.

[26] F. Moukalled, L. Mangani, M. Darwish, et al., The Finite Volume Method in
Computational Fluid Dynamics, vol. 113, Springer, 2016.

[27] L.N. Trefethen, D. Bau III, Numerical Linear Algebra, vol. 50, Siam, 1997.
[28] M. Potse, B. Dubé, J. Richer, A. Vinet, R.M. Gulrajani, IEEE Trans. Biomed. Eng.

53 (12) (2006) 2425–2435.
[29] S. Rush, H. Larsen, IEEE Trans. Biomed. Eng. 4 (1978) 389–392.
[30] M.E. Marsh, S.T. Ziaratgahi, R.J. Spiteri, IEEE Trans. Biomed. Eng. 59 (9) (2012)

2506–2515.
[31] M.P. Nash, A.V. Panfilov, Prog. Biophys. Mol. Biol. 85 (2–3) (2004) 501–522.
[32] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-

Mónico, Y. Yang, D. Lohse, R. Verzicco, et al., Comput. Phys. Commun. 229
(2018) 199–210.

[33] V. Spandan, V. Meschini, R. Ostilla-Mónico, D. Lohse, G. Querzoli, M.D. de Tullio,
R. Verzicco, J. Comput. Phys. 348 (2017) 567–590.

[34] V. Spandan, D. Lohse, M.D. de Tullio, R. Verzicco, J. Comput. Phys. 375 (2018)
228–239.

[35] M.E. Moghadam, I.E. Vignon-Clementel, R. Figliola, A.L. Marsden, M. of, J. Com-
put. Phys. 244 (2013) 63–79.

[36] S. Fortini, G. Querzoli, S. Espa, A. Cenedese, Exp. Fluids 54 (11) (2013) 1–9.
[37] F. Viola, E. Jermyn, J. Warnock, G. Querzoli, R. Verzicco, Ann. Biomed. Eng.

(2019) 1–16.
[38] J.E. Hall, Guyton and Hall Textbook of Medical Physiology, Elsevier Health Sci-

ences, 2010.

12

